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Preface

The 2007 IEEE International Workshop on Analysis and Modeling of Faces and
Gestures (AMFG) is the third workshop of its type organized in conjunction with
ICCV, this time in Rio de Janeiro, Brazil. Our primary goal is to bring together
researchers and research groups to review the status of recognition, analysis and
modeling of face, gesture, activity, and behavior; to discuss the challenges that
we are facing; and to explore future directions.

This year we received 55 submissions. Each paper was reviewed by three
program committee members. The whole reviewing process was double blind.
However, due to size limit, we were only able to accommodate 22 papers, among
which 8 are orals and 14 are posters. The topics covered by these accepted
papers include feature representation, 3D face, robust recognition under pose
and illumination variations, video-based face recognition, learning, facial motion
analysis, body pose estimation, and sign recognition.

A special word of thanks goes to Dr. Feng Zhao, our organizing chair, for his
dedication and great efforts in maintaining both the online submission system
and workshop website and in handling most of the author contacts. We are
indebted to the advisory committee members for their valuable suggestions and
to the program committee members for their hard work and timely reviews.
Finally, we thank Cognitec System GmbH and Siemens Corporate Research for
their sponsorship.

October 2007 S. Kevin Zhou
Wen-Yi Zhao

Xiaoou Tang

Shaogang Gong
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Learning Personal Specific Facial Dynamics for Face
Recognition from Videos
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Abstract. In this paper, we present an effective approach for spatiotemporal face
recognition from videos using an Extended set of Volume LBP (Local Binary Pat-
tern features) and a boosting scheme. Among the key properties of our approach
are: (1) the use of local Extended Volume LBP based spatiotemporal description
instead of the holistic representations commonly used in previous works; (2) the
selection of only personal specific facial dynamics while discarding the intra-
personal temporal information; and (3) the incorporation of the contribution of
each local spatiotemporal information. To the best of our knowledge, this is the
first work addressing the issue of learning the personal specific facial dynamics
for face recognition.

We experimented with three different publicly available video face databases
(MoBo, CRIM and Honda/UCSD) and considered five benchmark methods
(PCA, LDA, LBP, HMMs and ARMA) for comparison. Our extensive experi-
mental analysis clearly assessed the excellent performance of the proposed ap-
proach, significantly outperforming the comparative methods and thus advancing
the state-of-the-art.

Keywords: Facial Dynamics, Local Binary Patterns, Face Recognition, Boosting.

1 Introduction

Psychological and neural studies [1]] indicate that both fixed facial features and dy-
namic personal characteristics are useful for recognizing faces. However, despite the
usefulness of facial dynamics, most automatic recognition systems use only the static
information as it is unclear how the dynamic cue can be integrated and exploited. Thus,
most research has limited the scope of the problem by applying methods developed for
still images to some selected frames [2]]. Only recently have researchers started to truly
address the problem of face recognition from video sequences [3l4/516[7!8.9].

In [3]], an approach exploiting spatiotemporal information is presented. It is based
on modeling face dynamics using identity surfaces. Face recognition is performed by
matching the face trajectory that is constructed from the discriminating features and
pose information of the face with a set of model trajectories constructed on identity
surfaces. Experimental results using 12 training sequences and the testing sequences of
three subjects were reported with a recognition rate of 93.9%.

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 115]2007.
(© Springer-Verlag Berlin Heidelberg 2007
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In [4]], Li and Chellappa used the trajectories of tracked features to identify persons in
video sequences. The features are extracted using Gabor attributes on a regular 2D grid.
Using a small database of 19 individuals, the authors reported performance enhance-
ment over the frame to frame matching scheme. In another work, Zhou and Chellappa
proposed a generic framework to track and recognize faces simultaneously by adding an
identification variable to the state vector in the sequential important sampling method [3].

An alternative to model the temporal structures is the use of the condensation al-
gorithm. This algorithm has been successfully applied for tracking and recognizing
multiple spatiotemporal features. Recently, it was extended to video based face recogni-
tion problems [6l5]. More recently, the Auto-Regressive and Moving Average (ARMA)
model was adopted to model a moving face as a linear dynamical system and per-
form recognition [[7].

Perhaps, the most popular approach to model temporal and spatial information is
based on the Hidden Markov models (HMM) which have also been applied to face
recognition from videos [8]]. The idea is simple: in the training phase, an HMM is
created to learn both the statistics and temporal dynamics of each individual. During
the recognition process, the temporal characteristics of the face sequence are analyzed
over time by the HMM corresponding to each subject. The likelihood scores provided
by the HMMs are compared. The highest score provides the identity of a face in the
video sequence.

Unfortunately, most of the methods described above use spatiotemporal representa-
tions that suffer from at least one of the following drawbacks: (1) the local information
which is shown to be important to facial image analysis [11]] is not well exploited with
holistic methods such as HMMs; (2) while only personal specific facial dynamics are
useful for discriminating between different persons, the intra-personal temporal infor-
mation which is related to facial expression and emotions is also encoded and used;
and (3) equal weights are given to the spatiotemporal features despite the fact that some
of the features contribute to recognition more than others. To overcome these limita-
tions, we propose an effective approach for face recognition from videos that uses local
spatiotemporal features and selects only the useful facial dynamics needed for recog-
nition. The idea consists of looking at a face sequence as a selected set of volumes (or
rectangular prisms) from which we extract local histograms of Extended Volume Local
Binary Pattern (EVLBP) code occurrences. Our choice of adopting LBP (Local Binary
Patterns) for spatiotemporal representation is motivated by the recent results of LBP ap-
proach in facial image analysis and also in dynamic texture recognition .

In this paper, noticing the limitations of volume LBP operator in handling the tem-
poral information, we first extend the operator and derive a rich set of volume LBP
features denoted EVLBP. Then, instead of ignoring the weight of each feature or sim-
ply concatenating the local EVLBP histograms computed at predefined locations, we
propose an effective approach for automatically determining the optimal size and lo-
cations of the local rectangular prisms (volumes) from which EVLBP features should
be computed. More importantly, we select only the most discriminative spatiotemporal
EVLBP features for face recognition while discard the features which may hinder the
recognition process. For this purpose, we use AdaBoost learning technique [13] which
has shown its efficiency in feature selection task. The goal is to classify the EVLBP
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based spatiotemporal features into intra and extra classes, and then use only the extra-
class information for recognition. To the best of our knowledge, this is the first work
addressing the issue of learning personal specific facial dynamics for face recognition.

2 Extended Volume LBP Features (EVLBP)

The LBP texture analysis operator, introduced by Ojala et al. [16/12]), is defined as a
gray-scale invariant texture measure, derived from a general definition of texture in a
local neighborhood. It is a powerful means of texture description and among its prop-
erties in real-world applications are its discriminative power, computational simplicity
and tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixels by thresholding the
3 x 3 neighborhood of each pixel with the center value and considering the result as a
binary number. Fig.[Tlshows an example of an LBP calculation. The histogram of these
28 = 256 different labels can then be used as a texture descriptor. Each bin (LBP code)
can be regarded as a micro-texton. Local primitives which are codified by these bins
include different types of curved edges, spots, flat areas etc.

The calculation of the LBP codes can be easily done in a single scan through the
image. The value of the LBP code of a pixel (z., y.) is given by:

v
_

LBPpr = s(gp — g)27 (1)

=
Il
=)

where g. corresponds to the gray value of the center pixel (z¢,y.), gp refers to gray
values of P equally spaced pixels on a cicrle of radius R, and s defines a thresholding

function as follows:
_JLifx > 0
s() = {07 otherwise. &Y

The occurrences of the LBP codes in the image are collected into a histogram. The clas-
sification is then performed by computing histogram similarities. For an efficient rep-
resentation, facial images are first divided into several local regions from which LBP
histograms are extracted and concatenated into an enhanced feature histogram. In such
a description, the face is represented in three different levels of locality: the LBP la-
bels for the histogram contain information about the patterns on a pixel-level, the labels

Threshold Multiply

711 [q2 1(0]1 1121 4 1]1]0]4
2|55 0 1 8 16 0 16
5|13 ([0 1(0]0 32 |64 [128 32(01}0

LBP=1+4+16+32=53

Fig. 1. Example of an LBP calculation
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(b)

Fig.2. (a): A face sequence is seen as a rectangular prism and (b): An example of 3D neighbor-
hood of a pixel in Volume LBP

are summed over a small region to produce information on a regional level and the re-
gional histograms are concatenated to build a global description of the face. This locality
property, in addition to the computational simplicity and tolerance against illumination
changes, are behind the success of LBP approach for facial image analysis [13]].

The original LBP operator (and also its later extension to use neighborhoods of dif-
ferent sizes [[12]) was defined to deal only with the spatial information. For spatiotem-
poral representation, Volume LBP operator (VLBP) has been recently introduced in
[14]). The idea behind VLBP is very simple. It consists of looking at a face sequence
as rectangular prism (or volume) and defining the neighborhood of each pixel in three
dimensional space. Fig.[2] explains the principle of rectangular prism and shows an ex-
ample of 3D neighborhood for Volume LBP.

There are several ways of defining the neighboring pixels in VLBP. In [[14], P equally
spaced pixels on a circle of radius R in the frame ¢, and P + 1 pixels in the previous
and posterior neighboring frames with time interval L were used. This yielded in VLBP
operator denoted VLBP, p . Fig.[Bl(top) illustrates an example of VLBP operator with
P=4 and R=1.

We noticed in our experiments on face recognition from videos that VLBP, p r does
not encode well enough the temporal information in the face sequences since the oper-
ator considers neighboring points only from three frames and therefore the information
in the frames with time variance less than L are missed out. In addition, a fixed number
of neighboring points (i.e. P) are taken from each of the three frames, yielding in a less
flexible operator with large set of neighboring points. To overcome these limitations, we
introduce here an extended set of VLBP patterns by considering P points in frame 4,
@ points in the frames 1, and S points in the frames ;1o . This yields in Extended
Volume LBP (EVLBP) operator that we denote by EVLBPy, (p g,5), r-

By setting
Q=P+1

EVLBP;, (pg,s),r Will be equivalent to VLBPy, p r. Therefore, VLBP, p g can be
seen as a special case of EVLBPy, (p g ) r- Fig. Bl (bottom) illustrates an example
of Extended Volume LBP operator with P=4, Q=S=1 and R=1 (EVLBP, (41 1) 1),
while Fig.[3] (top) illustrates an example of VLBP 1.,4,1 operator which is equivalent to
EVLBPL’(4)5’O))1.
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Fig.3. Top: VLBPL,4,1. Bottom: EV LBPp, (41,1),1

Once the neighborhood function is defined, we divide each face sequence into sev-
eral overlapping rectangular prisms of different sizes, from which we extract local his-
tograms of EVLBP code occurrences. Then, instead of simply concatenating the local
histograms into a single histogram, we use AdaBoost learning algorithm for automat-
ically determining the optimal size and locations of the local rectangular prisms, and
more importantly for selecting the most discriminative EVLBP patterns for face recog-
nition while discarding the features which may hinder the recognition process.

3 Learning EVLBP Features for Face Recognition

To tackle the problem of selecting only the spatiotemporal information which is use-
ful for recognition while discarding the information related to facial expressions and
emotions, we adopt AdaBoost learning technique [15] which has shown its efficiency
in feature selection tasks. The idea is to separate the facial information into intra and
extra classes, and then use only the extra-class EVLBP features for recognition.

First, we segment the training face sequences into several overlapping shots of F
frames each in order to increase the number of training data. Then, we consider all
combinations of face sequence pairs for the intra and extra classes. From each pair
(sequencel, sequence?), we scan both face sequences with rectangular prisms of dif-
ferent sizes. At each stage, we extract the EVLBP histograms from the local rectangular
prisms and compute the x? (Chi-square) distances between the two local histograms.
x? dissimilarity metric for comparing a target histogram ¢ to a model histogram 1) is
defined by:

-1
, 4
2% §]+w] “)

where [ is the length of feature vector used to represent the local rectangular prisms.
Thus, for each pair of face sequences, we obtain a feature vector X; whose elements
are x? distances. Let us denote Y; € {+1, —1} the class label of X; where ¥; = +1
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if the pair (sequence;, sequence?) defines an extra-class pair (i.e. the two sequences
are from different persons) and Y; = —1 otherwise. This results in a set of training
samples {(X1, Y1), (X2,Y2), ..., (Xn,Yn)}. Algorithm 1 summarizes our procedure
of constructing the training data.

Inputs: Given a set of face sequences { Sequence}

forall combinations of pairs (S’equence%, Sequence?) do
Set Y; = +1 for extra-class pairs;

Set Y; = —1 for intra-class pairs;
forall locations and sizes of local prisms do

- Extract local EVLBP,, (p g s),r
histograms with different parameters;

— Compute x? distances between
corresponding local histograms in the
given pair of sequences;

— Collect the x? distances in a feature
vector X

end

end
Outputs: {(X1, Y1), (X2,Y2),..., (Xn,YN)}

Algorithm 1. The construction of the training samples for feature selection using AdaBoost

Given the constructed training sets, we then apply the basic AdaBoost learning al-
gorithm [[I3] in order to (i) select a subset of rectangular prisms from which EVLBP
features should be computed, and (%) learn and determine the weights of these selected
features.

Once the rectangle prisms are selected and their weights are determined, we per-
form the recognition of a given probe video sequence by extracting local histograms of
EVLBP patterns from the selected prisms and then applying nearest neighbor classifi-
cation using weighted 2 distance:

T—11-1
, B : (&t — Vie)?
Xal(&,¥) = ; ; “ it +Vin o

where T is the number of selected local prisms; «; are the weighting coefficients re-
sulted from AdaBoost learning, and [, the lengths of the feature vectors used to represent
local rectangular prisms.

4 Experimental Analysis

4.1 Benchmark Methods

For comparison, we implemented five different algorithms including Hidden Markov
models (HMMs) [8] and Auto-Regressive and Moving Average (ARMA) models [7] as
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benchmark methods for spatiotemporal representations, and PCA, LDA and LBP [13]]
for still image based ones. In the following, we briefly describe the implementation of
these benchmark methods.

a) HMMs
The principle of using HMMs to model the facial dynamics and perform video-based
face recognition is quite simple [8I17]]. Let the face database consist of video sequences
of P persons. We construct a continuous hidden Markov model for each subject in the
database. A continuous HMM, with N states {51, S1,, ..., Sy }, is defined by a triplet
A = (A, B,n), where A = {a,;} is the transition matrix, B = {b;(O)} are the state
conditional probability density functions (pdf) and = = {; } are the initial distributions.
The model X is built using a sequence of feature vectors, called observation sequence
O = {01,092, ..., 01}, extracted from the frames of the video sequence (I is the number
of frames). Different features can be extracted and used as observation vectors (e.g.
pixel values, DCT coefficients etc.). In [8], the PCA projections of the face images
were considered. Here in our experiments, we implemented a similar approach using
30 eigenvectors for dimensionality reduction and 16-state fully connected HMM.
During our training, using the Baum-Welch procedure [I7], a model X, , (p =
1,2,..., P), is built for all the subjects in the gallery. During the testing, given the
gallery models {\1, A2, ..., A\p} and the sequence of the PCA feature vectors O =
{01, 09, ..., 0; }, the identity of the test face sequence is given by:

argmaz P(O|\p) (6)
P

In other terms, the likelihood scores P(O|\,) provided by the HMMs are compared,
and the highest score defines the identity of the test video sequence.

b) ARMA
In the ARMA framework, a moving face is represented by a linear dynamical system
and described by Eqs.[71&

z(t+1) = Az(t) + v(t) v(t) ~ N(0, R) (7

I(t) = Cu(t) + w(t) w(t) ~ N(0,Q) (®)

where, I(t) is the appearance of the face at the time instant ¢, x(¢) is a state vector that
characterizes the face dynamics, A and C are matrices representing the state and output
transitions, v(t) and w(t) are IID sequences driven from some unknown distributions.
We build an ARMA model for each face video sequence. To describe each model,
we need to estimate the parameters A, C, @) and R. Using the tools from the system
identification literature, the estimation of the ARMA model parameters is closed-form
and therefore easy to implement [10[7]. While the state transition A and the output
transition C' are intrinsic characteristics of the model, () and R are not significant for the
purpose of recognition [10]. Therefore, we need only the matrices A and C to describe
a face video sequence. Once the models are estimated, recognition can be performed by
computing distances between ARMA models corresponding to probe and gallery face
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sequences. The gallery model which is closest to the probe model is assigned as the
identity of the probe (nearest neighbor criteria).

Several distance metrics have been proposed to estimate the distance between two
ARMA models [18]]. Since it has been shown that the different metrics do not alter
the results significantly, we adopted in our experiments the Frobenius distance (d%),
defined by :

di =2 sin®0;(Aj, i) 9)
=1

where, §; are the subspace angles between the ARMA models A; and )\, defined in

(18]

c) PCA, LDA and LBP

For comparison, we also considered still image based methods such as PCA, LDA and
LBP. However, in video-based face recognition schemes both training and test data (gal-
leries and probes) are video sequences. Therefore, performing still-to-still face recog-
nition when the data consists of video sequences is an ill-posed problem (i.e. which
frame from the test sequence to compare to which frame in the reference sequence?).
Here, we adopt a scheme proposed in [19] to perform static image based face recog-
nition that exploits the abundance of face views in the videos. The approach consists
of performing unsupervised learning to extract a set of K most representative samples
(or exemplars) from the raw gallery videos (K=3 in our experiments). Once these exem-
plars are extracted, we build a view-based system and use a probabilistic voting strategy
to recognize the individuals in the probe video sequences.

4.2 Experimental Data

For experimental analysis, we considered three different publicly available video face
databases (MoBo [20]], Honda/UCSD [9] and CRIM [21]]) in order to ensure an exten-
sive evaluation of our proposed approach and the benchmark methods against changes
caused by different factors including face image resolution, illumination variations,
head movements, facial expressions and the size of the database.

The first database, MoBo (Motion of Body), is the most commonly used in video-
based face recognition research [3I22/8]], although it was originally collected for the
purpose of human identification from distance. The considered subset from MoBo data-
base contains 96 face sequences of 24 different subjects walking on a treadmill. Some
example images are shown in Fig. 4l Each sequence consists of 300 frames. From each

Fig. 4. Examples of cropped facial images from MoBo video database
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Fig. 5. Examples of facial images from CRIM video database

video sequence, we automatically detected and rescaled the faces, obtaining images of
40x40 pixels.

The second database, Honda/UCSD, has been collected and used by Lee et al. in
their work on video-based face recognition [9]. It was also used in the recent study of
Aggarwal et al. [[7]. The considered subset from Honda/UCSD database contains 40
video sequences of 20 different individuals (2 videos per person). During the data col-
lection, the individuals were asked to move their face in different combinations (speed,
rotation and expression). From the video sequences, we cropped the face images in the
same way as we did for the MoBo database. The size of the resulted facial images is
20x%20 pixels.

In order to experiment with a large amount of facial dynamics, resulted for example
from the movements of the facial features when the individuals are talking, we con-
sidered a third video database called CRIM. This is large set of 591 face sequences
showing 20 persons reading broadcast news for a total of about 5 hours. The database
is originally collected for audio-visual recognition. There are between 23 and 47 video
sequences for each individual. Some cropped images are shown in Fig. |5l The size of
the extracted face images is 130x 150 pixels.

4.3 Experimental Results and Analysis

From each of the three video databases (MoBo, USCD/HONDA and CRIM), we ran-
domly selected half of the face sequences of each subject for training while the other
half was used for testing. In addition, given the limited number of training samples in
MoBo and Honda/UCSD databases, we also segmented the face sequences into sev-
eral overlapping shots in order to increase the number of training samples. In all our
experiments, we considered the average recognition rates of 100 random permutations.

First, we applied PCA, LDA, LBP, HMMs and ARMA to the test sequences in the
three databases. The performances of these methods are shown in Tables 1-3. From
the results on MoBo database (Table 1), we notice that all the methods perform quite
well and the spatiotemporal based methods (i.e. HMMs and ARMA) are slightly better
that the static image based methods (PCA, LBP and LDA). The better performance of
the spatiotemporal methods is in agreement with the neuropsychological evidence [1]]
stating that facial dynamics are useful for recognition. From these results we can also
see that the benefit of the spatiotemporal approach is not very significant. Perhaps, in
MoBo database, this is due to the few amount of facial dynamics which are mainly
limited to rigid head movements.

However, the results on Honda/UCSD database (Table 2) show that the low-image
resolution (20 x 20 pixels) affects all these five methods and that image based ones
are more affected. This is also in agreement with the neuropsychological findings that
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Table 1. Comparative recognition results of 5 benchmark methods on MoBo database

Method  Recognition rate

PCA 87.1%
LDA 90.8%
LBP 91.3%
HMM [8] 92.3%

ARMA 93.4%

Table 2. Comparative recognition results of 5 benchmark methods on Honda/UCSD database

Method  Recognition rate

PCA 69.6%
LDA 74.5%
LBP 79.6%
HMM 84.2%

ARMA 84.9%

Table 3. Comparative recognition results of 5 benchmark methods on CRIM database

Method  Recognition rate

PCA 89.7%
LDA 91.5%
LBP 93.0%
HMM 85.4%

ARMA [[7] 80.0%

indicate that facial movement contributes more to the recognition under degraded view-
ing conditions.

Surprisingly, the results on CRIM database (Table 3) show that HMM and ARMA
approaches gave worse results than PCA, LDA, and LBP based methods. While one
may not expect worse performances using spatiotemporal representations, the obtained
results attest that PCA, LDA and LBP based representations might perform better. This
means that combining face structure and its dynamics in an ad hoc manner does not
systematically enhance the recognition performance.

From the experiments, we also noticed that the basic LBP approach performed
quite well and outperformed PCA and LDA in all our tests. This confirms the validity of
LBP based descriptions in face analysis. A bibliography of LBP-related research can be
found at http : //www.ee.oulu. fi/research/imag/texture/lbp/bibliography/.

We also experimented with Volume LBP spatiotemporal approach which has been
successfully applied to dynamic texture analysis in [14]. We divided each face sequence
into several overlapping local rectangular prisms of fixed sizes. Then, we extracted
the VLBP based spatiotemporal representation using different VLBP operator para-
meters. For recognition, we adopted the x? distance. Using such an approach, we ob-
tained best recognition rates of 90.3%, 78.3% and 88.7% with VLBP3 4 1, VLBP; 4 1
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and VLBP; 4; on MoBo, Honda/UCSD and CRIM databases, respectively. Surpris-
ingly, these results are worse than those obtained using still image LBP based approach
which yielded in recognition rates of 91.3% (versus 90.3%), 79.6% (versus 78.3%)
and 93.0% (versus 88.7%) on MoBo, Honda/UCSD and CRIM databases, respectively.
This supports our earlier conclusion indicating that using spatiotemporal representa-
tions do not systematically enhance the recognition performances. The most significant
performance degradations of VLBP approach are noticed on CRIM database which
contains the largest amount of facial dynamics. This indicates that some of these facial
dynamics are not useful for recognition. In other terms, this means that some part of the
temporal information is useful for recognition while another part may also hinder the
recognition. Obviously, the useful part is that defining the extra-personal characteristics
while the non-useful part concerns the intra-class information such as facial expres-
sions and emotions. For recognition, one should then select only the extra-personal
characteristics.

To verify this hypothesis, we considered our proposed approach which consists of
using AdaBoost for learning and selecting only the most discriminative spatiotempo-
ral features. First, we tested AdaBoost with VLBP features and obtained recognition
rates of 96.5%, 89.1% and 94.4% on MoBo, Honda/UCSD and CRIM databases, re-
spectively. As shown in Tables 4-6, performing feature selection yields in significant
performance enhancement on all these three databases. This validates our hypothesis
that only some part of the temporal information is useful for recognition while another
part may hinder the recognition process.

Then, we experimented with the proposed extended set of VLBP features (EVLBP)
introduced in Section 2 and used AdaBoost for learning the most discriminative spa-
tiotemporal EVLBP features. As expected, this enhanced further the performances,
yielding in excellent recognition rates of 97.9%, 96.0% and 98.5% on MoBo, Honda
/UCSD and CRIM databases, respectively. This additional performance enhancement
explains the benefit of enriching the VLBP feature set by deriving EVLBP and shows
the limitations of VLBP, p r operator which does not encode well enough the tempo-
ral information in the face sequences since the operator considers neighboring points
only from three frames and therefore the information in the frames with time variance
less than L are missed out.

Notice that the obtained results significantly outperform those of all benchmarks
methods (PCA, LDA, LBP, HMM and ARMA) on the three databases (comparison be-
tween Tables 1-3 and Table 4-6). To our knowledge, this is also the best performance
on these databases. Perhaps, these excellent results can be explained as follows: (i) the
spatiotemporal representation using extended volume LBP features, in contrast to the
HMM based approach, is very efficient as it codifies the local and global facial dynam-
ics and structure; and more importantly (i¢) the temporal information extracted by the
extended volume LBP features consisted of both intra and extra personal information
(facial expression and identity). Therefore, there was need for performing feature selec-
tion. In addition, the selected EVLBP spatiotemporal features were assigned different
weights reflecting their contributions to recognition, while this was not the case in other
methods.
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Table 4. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBoost on
MoBo database

Method Recognition rate
VLBP 90.3%
VLBP+AdaBoost 96.5%

EVLBP+AdaBoost 97.9%

Table 5. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBoost on
Honda/UCSD database

Method Recognition rate
VLBP [14] 78.3%
VLBP+AdaBoost 89.1%

EVLBP+AdaBoost 96.0 %

Table 6. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBoost on
CRIM database

Method Recognition rate
VLBP 88.7%
VLBP+AdaBoost 94.4%

EVLBP+AdaBoost 98.5%

Analyzing the selected local regions (the rectangular prisms) from which the EVLBP
features were collected, we noticed that the dynamics of the whole face and the eye
area are more important than that of the mouth region for identity recognition. This is
a little surprising in the sense that one can expect that the mouth region would play an
important role as it is the most non-rigid region of the face when an individual is talking.
Perhaps, mouth region does play an important role but for facial expression recognition.
Fig. [6l shows examples of the most discriminative spatiotemporal regions returned by
AdaBoost for CRIM face sequences and from which EVLBP spatiotemporal features
are extracted. Notice that these four first selected features are extracted from global
and local regions. This supports the results of other researchers indicating that both
global and local features are useful for recognition. From how many selected regions
the EVLBP features are computed? Fig. [/l shows the recognition results as a function
of the number of regions selected by AdaBoost. The best results are obtained with 9,
16 and 6 regions on MoBo, Honda/UCSD and CRIM databases, respectively. Using
additional regions did not enhance the recognition performance.

Table 7 summarizes the obtained results using the different methods (PCA, LDA,
LBP, HMM, ARMA, VLBP and EVLBP) on the three databases (MoBo, Honda/UCSD
and CRIM).
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Fig. 6. Examples of the four first selected rectangular prisms from which EVLBP spatiotemporal
features are extracted on CRIM face sequences

08

03

-

_/:a/—

Recognition rate

@\3\

—& MoBo

—- Hondaucsp

~>-crRm

01E/E

02 {

0 2

4 [ 8 10
Number of rectan

12 14

16 18

gular prims

Fig.7. The recognition rates function of the number of selected regions with AdaBoost from
which EVLBP features are extracted

Table 7. Summary of the obtained results using the different methods on the three databases

Method

PCA

LDA

LBP

HMM [8]]

ARMA

VLBP
VLBP+AdaBoost
EVLBP+AdaBoost

5 Conclusion

Results on MoBo Results on Honda/UCSD Results on CRIM

87.1%
90.8%
91.3%
92.3%
93.4%
90.3%
96.5%
97.9 %

69.9%
74.5%
79.6%
84.2%
84.9%
78.3%
89.1%
96.0 %

89.7%
91.5%
93.0%
85.4%
80.0%
88.7%
94.4%
98.5%

The few works attempting to use spatiotemporal representations for face recognition
from videos ignore the fact that some of the facial information may also hinder the
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recognition process. Indeed, while one may not expect worse results using spatiotempo-
ral representations instead of still image based ones, our results showed that still image
based methods can perform better than spatiotemporal based ones. This suggests that
the existing spatiotemporal representations have not yet shown their full potential and
need further investigation.

From this observation, we presented a novel approach for spatiotemporal face recog-
nition with excellent results. The efficiency of the proposed approach can be explained
by the local nature of the spatiotemporal EVLBP based description, combined with the
use of boosting for selecting only the personal specific information related to identity
while discarding the information which is related to facial expression and emotions.
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A New Probabilistic Model for Recognizing
Signs with Systematic Modulations
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Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore

Abstract. This paper addresses an aspect of sign language (SL) recogni-
tion that has largely been overlooked in previous work and yet is integral
to signed communication. It is the most comprehensive work to-date on
recognizing complex variations in sign appearances due to grammatical
processes (inflections) which systematically modulate the temporal and
spatial dimensions of a root sign word to convey information in addition
to lexical meaning. We propose a novel dynamic Bayesian network —
the Multichannel Hierarchical Hidden Markov Model (MH-HMM)— as a
modelling and recognition framework for continuously signed sentences
that include modulated signs. This models the hierarchical, sequential
and parallel organization in signing while requiring synchronization be-
tween parallel data streams at sign boundaries. Experimental results
using particle filtering for decoding demonstrate the feasibility of using
the MH-HMM for recognizing inflected signs in continuous sentences.

1 Introduction

In sign language (SL) communication, a large number of complex variations in
manual sign (i.e. hand/arm gesture) appearances are possible due to grammati-
cal processes that systematically change the sign appearance to convey informa-
tion in addition to the lexical meaning. This includes information expressed in
English through prefixes, suffixes or additional words like adverbs. Hence, while
information is expressed in English by using additional syllables and words as
necessary rather than changing a given word’s form, in SL, it is often expressed
through a change in the form of the root sign word. Thus, just as there is a large
variety of prefixes, suffixes, and adverbs that may be used with a particular
word in English, there is also a large variety of different systematic appearance
changes that can be made to a root word in SL.

Much of SL recognition research has focused on solving problems similar to
those that occur in speech recognition, such as scalability to large vocabulary,
robustness to noise and person independence. These are worthy problems to
consider and solving them is crucial to building a practical SL recognition system.
However, the almost exclusive focus on these problems has resulted in systems
that can only recognize the lexical meanings conveyed in signs, and bypass the
richness and complexity of expression inherent in manual signing. Our work is a
step towards addressing this imbalance by focusing on recognizing the different

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 1630] 2007.
© Springer-Verlag Berlin Heidelberg 2007



A New Probabilistic Model for Recognizing Signs 17

sign appearances formed by modulating a root word, and extracting both the
lexical meaning and the additional grammatical information that is conveyed by
the different appearances.

Specifically, we model and extract information conveyed by two types of gram-
matical processes that produce systematic changes in manual sign appearance,
viz., directional use of verbs and temporal aspect inflections, described in
the next section. The signs and grammar described are with reference to American
Sign Language (ASL), which is extensively used by the deaf in North America and
is also well-researched by sign linguists and researchers in machine recognition.

For the rest of this paper, the terms word and sign are defined as follows. If
the lexical /word meaning and grammatical information conveyed by two SL hand
gestures is the same, then we consider it to be the same sign. However, gestures
that convey the same lexical /word meaning but different grammatical information
are defined to be the same word but different and distinct signs. So for example,
the same word inflected in different ways results in different signs.

1.1 Grammatical Processes in Signs

Sign linguists agree that signs have internal structure that can be broken down
into smaller parts [I7], and they generally distinguish the basic parts or compo-
nents as consisting of the handshape, hand orientation, location and movement.
Handshape refers to the finger configuration, orientation to the direction in which
the palm and fingers are pointing, and location to where the hand is placed rela-
tive to the body. Hand movement includes both path movement that traces out a
trajectory in space, and movement of the fingers and wrist. Each of these compo-
nents have a limited number of possible categories, or “primes”. In the following
sections, we describe two types of grammatical processes and their effect on the
different sign components.

Directional Verbs. Signs with directional verb inflections are made with vari-
ous handshapes and movement path shapes to encode the lexical meaning of the
verb. Meanwhile, the movement path direction (the direction in which the hand is
moving in 3-dimensional space) serves as a pointing action to identify the subject
and the object of the verb [IT].

Example 1. Figure[l(a) shows the sign which has lexical meaning TEACH and
with subject and object being the signer and the addressee, respectively (Eng-
lish translation: “I teach you”). Figure[I[b) shows the sign with the same lexical
meaning of TEACH, this time with subject and object being the addressee and
the signer, respectively (“You teach me”). In Figure[(c), the subject of the verb
is indicated as the signer. The object is neither the signer nor the addressee but a
third person standing (off-camera) to the left of the signer.

Note that movement direction modulation is accompanied by changes in location
and palm orientation. For example, the final location of the hand depends on the
locations of entities these verbs are directed towards and the signer’s judgement
in tracing a path that leads from the starting point of the sign towards the entity
that is the verb’s object.
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@ (b)

(©)

Fig. 1. The sign TEACH pointing towards different subjects and objects : (a) “I teach
you”, (b) “You teach me”, (c) “I teach her/him (someone standing to the left of the

signer)”

(b)

Fig. 2. (a) The sign LOOK-AT (without any additional grammatical information), (b)
the sign LOOK — ATIPURATIONAL] conveying the concept “look at continuously”

Temporal Aspect Inflections. These inflections are represented by systematic
changes in the sign’s movement path, in terms of the path shape, size, rhythm and
speed.

Example 2. In Figure[2(a), the sign is uninflected and conveys the lexical mean-
ing LOOK-AT. Tt has a linear, straight movement path shape. In Figure 2I(b),
the sign is modulated with the [DURATIONAL] inflection to give the meaning
“look at continuously”. The handshape of this inflected sign is the same as in
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its uninflected form but the movement of the sign is modified to show how the
action is performed with reference to time. The sign is performed repetitively in
a circular path shape with smooth motion. Examples of other signs that can be
inflected in this way are WRITE, SIT, LOOK-AT and 33 other signs listed by
Klima and Bellugi in [10].

AL

(i} i)

—

Fig. 3. Signs with the same lexical meaning, ASK, but with different temporal aspect
inflections (from [I5]) (i) [HABITUAL], meaning “ask regularly”, (ii) [TERATIVE],
meaning “ask over and over again”, (iii) [DURATIONAL], meaning “ask continuously”,
(iv) [CONTINUATIVE], meaning “ask for a long time”

Figure Bl shows illustrations of the signs expressing the lexical meaning ASK,
with different types of aspectual inflections - [HABITUAL|, [TERATIVE], [DU-
RATIONALJ, and [CONTINUATIVE]. In terms of rhythm and speed, the [DU-
RATIONAL] and [HABITUAL] inflections induce smooth motion at a constant
rate while the [CONTINUATIVE] and [ITERATIVE] inflections induce uneven
motion.

The meanings conveyed through these modulations in movement are
associated with aspects of the verbs that involve frequency, duration, recurrence,
permanence, and intensity [T0/I5]. Besides the examples mentioned above, other
meanings that may be conveyed include “incessantly”, “from time to time”, “start-
ing to”, “increasingly”, “gradually”, “resulting in”, “with ease”, “readily”, “ap-
proximately” and “excessively”. Klima and Bellugi [10] lists 11 different types of
aspectual meanings that can be expressed. Note that the aspectual information
is conveyed in addition to and without changing the lexical meaning of the root
word.

Multiple Simultaneous Grammatical Information. In ASL, multiple gram-
matical information may be conveyed through a single sign, by creating complex
spatio-temporal sign forms [10]. This is possible because the modulations of sign
movement due to different categories of grammatical processes affect different
characteristics of movement. For example, a directional verb points to its subject
and object through the direction of the movement. Whereas, if the verb is marked
for aspectual meaning, this is expressed through the movement path shape, size
and speed. So for example, we can express the meaning “you give to me regularly”
as distinct from “you give to me continuously” or “I give to you regularly” and so
on. The sign vocabulary in the experiments reported in Section F includes signs
conveying such multiple simultaneous grammatical information.

Previous Work. Generally there have been very few works that address gram-
matical processes that affect sign appearance in systematic ways. Sagawa and
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Takeuchi [I6] deciphered the subject-object pairs of Japanese Sign Language (JSL)
verbs in sentences by learning the (Gaussian) probability densities of various spa-
tial parameters of the verb’s movement from training examples and thereby cal-
culated the probabilities of spatial parameters in test data. Six different sentences
constructed from two verbs and three different subject-object pairs, were tested
on the same signer that provided the training set, and were recognized with an av-
erage word accuracy of 93.4%. Braffort [4] proposed an architecture where hidden
Markov models (HMMs) were employed for classifying lexical words using all the
features of the sign gesture (glove finger flexure values, tracker location and orien-
tation), while directional verbs were classified by their movement trajectory alone.
Sentences comprising seven signs were successfully recognized with 92-96% word
accuracy. The main weaknesses of these works is that firstly they recognize a very
limited number of different signs. There are six different sign appearances in [16]
and seven signs in [4]. Secondly, they tackle signs that exhibit spatial variations
only. Thirdly, only one type of variation is expressed in the signs at any one time,
and there are no instances of multiple simultaneous grammatical information be-
ing expressed through multiple simultaneous systematic variations. Compared to
the above, the work presented in this paper recognizes a much more expansive
vocabulary of 98 signs, including signs exhibiting temporal as well as spatial vari-
ations. Signs with multiple inflections are also recognized. This paper extends our
work on isolated gestures previously reported in [14].

2 Proposed Approach

Our approach to recognizing inflected signs is to probabilistically model the ef-
fect of lexical and grammatical information on the sign appearance and then use
the model to infer the information conveyed, through observing the physical sign
appearance.

Besides movement path attributes, directional verb and temporal aspect inflec-
tions also affect the location and orientation sign components, as follows:

— Directional verb inflections: the movement direction modulation is accompa-
nied by a change in hand location and palm orientation.

— Temporal aspect inflections: the movement path shape and size modulations
also affect the hand location.

We use the fact that the effect of the inflections above appear in both the loca-
tion and orientation components to reduce the number of sign components that
need to be modelled. Thus taking into account that lexical word meaning affects
the handshape, location and orientation sign components, we find that only three
sign components need to be modelled — handshape, location and orientation.
These components are assumed to be independent, with distinct values (“primes”)
that are classified from separate feature sets. The advantage of this simplifying as-
sumption is that we need never model the interaction between all the components
in a sign, thereby greatly reducing the number of model parameters. We consider a
sign as consisting of synchronized sequences of distinct values in each of the three
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components. The synchronization is at the start and end of the sign, since each
component expresses the same sign at the same time.

3 Modelling Signs with the Multichannel Hierarchical
Hidden Markov Model (MH-HMM)

Hierarchical hidden Markov models (H-HMM) [6I12] have been proposed as a suit-
able dynamic Bayesian network (DBN) structure for modelling domains with hier-
archical processes that evolve at multiple time scales. An example of such a process
is speech, where phones combine sequentially to form words, and combinations of
words form sentences. Each level (sentence, word, phone) evolves at a different
time scale, with state evolutions at higher levels dependent on state sequences
finishing at the lower levels. For example, the next word in a sentence can start
only when the phone sequence of the current word has ended.

SL manual sign sequences differ from the above domains in that they not only
exhibit hierarchical structure, but also consist of multiple data streams, corre-
sponding to each sign component. Our approach represents signs as parallel and
simultaneous sequences of values in each of the sign components of handshape, lo-
cation and orientation. We can consider these component values as the equivalent
of phone subunits in speech. So a sign is decomposed as a sequence of phones in
each component stream. And we require that for any particular sign in the sen-
tence, the phone sequence for that sign in each component stream should start
and end at the same time.

We propose the Multichannel Hierarchical Hidden Markov model (MH-HMM)
as a DBN suitable for simultaneously modelling both the hierarchical and the par-
allel structure in sign sequences. This structure is shown in Figure @l The MH-
HMM models a sentence as made up of a sequence of signs, and each sign as made
up of parallel phone sequences, one in each sign component. In our applications,
component 1 corresponds to handshape, component 2 is orientaion, and compo-
nent 3 is location. Most of the previous work in combining multiple data streams
either modelled a flat structure for the parallel data streams (e.g multistream
HMM [3], product HMM [9], parallel HMM [18], coupled HMM [5] and factorial
HMM [7]) or where multiple time-scales and a hierarchical structure was consid-
ered, modelled the higher and lower-levels of the hierarchy in a decoupled manner
(eg. layered HMM [13]). In contrast, the MH-HMM models multiple data streams
with hierarchical structure and different levels of the hierarchy are jointly mod-
elled. In addition, sign-level synchronization between component streams is ac-
complished through the use of a sync node, S? in Figure @ such that none of the
components have priority in terms of synchronization. This is unlike the model
proposed in [§] where an acoustic feature stream and a video data stream are mod-
elled to perform audio-visual speech recognition, and the word transition times
are solely determined by the acoustic data stream. Another advantage of the MH-
HMM framework is that it allows training to be performed separately on each
component’s observation feature stream (described in the next section).
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Fig. 4. MH-HMM with two @Q-levels and with synchronization between components at
sign boundaries (shown for a model with three components streams, and two time slices).
Dotted lines enclose component-specific nodes.

We define the conditional probability distributions (CPDs) for ¢ > 1 in the
MH-HMM of Figure[d as below.

6(i,j) ifb=0
PQ;=4lQ_ =i, FAl=bF | =f) =< A'(i,j)ifb=1and f =0
7l(j) ifb=1land f=1
0 ifb=0

1 _ 1 _ 21 _ —
PR =1Qy =i, kY " =b) = {Al(i,end) ifb=1

_ _ A? (i, 5)if f=0
PO = Qi = = 101 )_{ w2e(j) iff=1
P(F?©=1|Q} = k,Q] © =1i) = A} “(i, end)

P(OF = of|Q} © = k) = N(of; 5, ZF)
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for ¢ = 1,2, 3. Observed component features, Oy, are assumed to be continuous-
valued with Gaussian densities. A{(4, j) is the state transition probability at level
d, indexed by parent value k (if parents exist). A¢ (i, end) is the probability of end-
ing at state sequence. 77,‘3 (7) is the initial state probability at level d, indexed by

parent value k. A{(i, j) and A (i, j) are related as follows.
AR(i, )1 = AL(i, end)) = AL(i, )

The CPD of S? is defined as the EX-NOR function (see Table ).

The key difference between the MH-HMM and the H-HMM is that in the MH-
HMM, there is one set of sign-level nodes, Q} and F}', but multiple sets of phone-
level and observation feature nodes. In Figure@lthere are three component streams
and therefore three sets each of Q? ¢, F? ¢, and O nodes, with ¢ = 1,2,3. (In
general, we can expand the model to as many sets, N., of the above nodes as re-
quired to model multiple component data streams.) The phone-level nodes share
the same parent sign node (Q}). So at any instant in time, the phone sequences in
each component are associated with a common sign value. However, each compo-
nent c has a separate set of phone-level nodes (Q? ©and F? ¢,c=1,...,N,), and
observation feature nodes (Of, ¢ = 1, ..., N.). So within the time period of a sign,
the different component data streams can have different phone state evolution dy-
namics, where the phone values in one component stream may be changing faster
or slower than those in another component stream. At sign boundaries however,
the phone sequences for the current sign in all NV, components are required to end,
and the phone sequences in all components for the next sign must start. In the MH-
HMM, this is achieved by forcing F? ¢ (which indicates when the phone sequence
of the ¢-th component has ended), for ¢ = 1,..., N,, to all have values of 0 or all
have values of 1. The synchronization node S, is the common child of the F? ¢
nodes and since the CPD of S? is defined as the EX-NOR function, S? = 1 only
when its parents either all have values of 1 or all have values of 0. When the MH-
HMM is used for recognizing continuous signing, for example, when we input the

Table 1. CPD for the sign synchronization node S7 in a MH-HMM modelling three
components. The CPD implements the EX-NOR function.

; P(S752|Ft2 17Ft2 27Ft2 3)
FRUE22R23 62 082 =1

0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
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data from a test sentence, we set S? = 1 in all time slices to enforce sign-level
synchronization.

3.1 MH-HMM Training and Testing Procedure

In the MH-HMM, the sentence model, i.e. the possible sign sequences, are encoded
in the CPD parameters of the sign-level nodes Q} and F}!. For a particular sign,
there is not one but IV, sets of component-specific phone-level state initial, transi-
tion and ending probabilities encoded in the CPD parameters for nodes Q7 ¢ and
F? ©. For each phone in the c-th component, the output probability distributions
for phone are also specific to the component and are defined by the CPD of the
component’s observation feature Of.

Our training and modelling strategy is to learn the component-specific phone-
level state initial, transition and ending probabilities and output probability dis-
tributions by learning each component’s parameters independently of each other
and with independent observation feature sets. This training is done using the (sin-
gle channel) H-HMM (refer Figure[]). The parameters of this DBN are estimated
with the maximum likelihood (ML) criterion, using the expectation-maximization
(EM) training algorithm. All the terms required in the E-step can be obtained
from any DBN inferencing algorithm such as the forward interface algorithm [12].
After training, the learned component-specific parameters are combined in the
MH-HMM by specifying the CPD parameters for the component-specific phone-
level nodes (Q? € and F? ©), and observation feature nodes (Of), forc = 1,..., N..
The sentence model for a particular set of sentences can be straight-forwardly de-
termined from knowledge of the sign sequences that appear in the sentence set.
For example, the probability of a particular sign starting a sentence is simply the
relative frequency of that sign appearing at the start of the sentences within the
set. We thus specify the sentence model, i.e. the CPD parameters of sign-level
nodes (Q} and F}'), by taking into account the sign sequences that appear in the
training sentence set. The remaining node in the MH-HMM is the sychroniza-
tion node S? whose CPD parameters are specified to implement the EX-NOR
function.

After the procedure above, the MH-HMM can be used for recognition of con-
tinuously signed sentences. To recognize a test sentence, the values of all observed
nodes in each time slice are input to the MH-HMM, and the most-likely sign se-
quence that could have produced the observed values is inferred (here observed
nodes refers to nodes with known values). In our testing procedure, the observed
nodes at time ¢ include not just the observation features of all the components,

¢ fore=1,..., N, but also the nodes S? and F}'. As mentioned above, in order
to enforce synchronization between component streams at sign boundaries, the
value of the S7 node must be set as 1 in all time slices. We also set F}! = 0 for
t=1...,7 —1and F} = 1, indicating that for each test sequence, the sentence
ends only at the last time slice and not before [12].
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F' node
indicates sign seq.
has finished

Q' node
represents sign

F2-¢ node
indicates phone
seq. has finished

Q2 node
represents phone

component
features

time 2

Fig. 5. H-HMM with two Q-levels for training sign component c. Nodes indexed by
superscript ¢ pertain to the specific component (e.g. Q7 ¢ refers to the phone node at
time ¢ for component c¢). Dotted lines enclose nodes of the same time slice.

Time and space complexity is an issue for decoding because of the large number
of hidden variables in our network. Hence, it is necessary to use approximate in-
ferencing methods to reduce time and space requirements to a manageable level.
Particle filtering (PF) and other sampling-based algorithms have the advantage
of being easy to implement on various kinds of models and giving exact answers
in the limit of infinite number of samples [12]. Thus we apply PF for decoding test
sentences in the MH-HMM (details omitted here).

4 Experimental Results
4.1 Sign Vocabulary and Sentences

The collected data is obtained from a deaf individual who is a native signer of
the local (Singaporean) sign language. The signed sentences, which adhered to
ASL grammar, were continuous, with no pauses between signs. There were 73 dis-
tinct sentences between 2 to 6 signs long, constructed from a 98-sign vocabulary.
Each distinct sentence was signed approximately 5 times, providing a total of 343
sentences and 1927 signs. The 98-sign vocabulary includes signs formed from a
combination of a root lexical word and one or more directional verb and temporal
aspect inflection values. There are 29 different lexical words present in the vocab-
ulary, three different temporal aspect inflection values ((DURATIONAL], [HA-
BITUALJ, [CONTINUATIVE]) and 11 different directional verb inflection values
(see Table2]) that may combine with a root lexical word.

Examples of directional verb and temporal aspect inflected signs in the vocab-
ulary are given below:

— The root verb HELP, combined with inflection values indicating different sub-
jects and objects, yields: HELP'”YOU HELPYOVU—! HELPCIRL
HELPI—»JOHN HELPJOHN*}I HELPJOHN—»YOU HELPYOU*}HELP
HELPGIRL—T fE[pCIRL—YOU 'Ry pYOU—GIRL fypp pGIRL—JOHN ’
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Table 2. Directional verb inflections used in constructing signs for the experiments

VERBI*)YOU, VERBYOUHI, VERBIHGIRL’ VERBGIRLHH VERBI*}JOHI\E \/vE]‘;{P)JOHN~>I7
VERBYOU_‘GIRL, VERBGIRL_‘YOU7 VERBYOU—»JOHN, VERBJOHN—»YOU’
VERBGIRL*»JOHN

— Theroot word EAT, combined with different temporal aspect inflections yields:
EAT[DURATIONAL] o Ap[HABITUAL] o A p[CONTINUATIVE]

Some of the inflected signs are formed with two inflection values which ap-

pear simultaneously, further increasing the complexity of the vocabulary. Exam-

ples of these signs are: (GIVE[DURATIONAL])I*GIRL, (GIVE[HABITUAL])I_’GIRL
(GIVE[CONTINUATIVE]

)
VI=GIRL A few of the lexical root words are used in com-
bination with various inflection values to form many different signs, for example,
the lexical word GIVE appears in 16 different signs.

4.2 Data Measurement and Feature Extraction

Data was obtained using the Polhemus electromagnetic tracker [I] which consists
of an electromagnetic field-emitting transmitter and sensors that detect their 3-
dimensional position and orientation within the field. Sensors were placed on the
back of the signer’s right hand and the base of his spine. Conceptually, each sensor
has an attached orthogonal coordinate frame. The position and orientation of the
right hand’s sensor is represented by the 3-dimensional coordinates of its origin, x,
y, and z axes (0, Xp, Yy and zy ), relative to the waist sensor’s coordinate frame.
The waist sensor’s coordinate frame was used as a reference to discount variations
in the signer’s position and the direction he is facing, relative to the transmitter. In
addition, we also collected data from a Virtual Technologies Cyberglove [2] worn
on the right hand. This records the fingers’ joint and abduction angles, and the
wrist pitch and yaw, from 18 sensors in the glove. The tracker and glove data are
synchronized and were recorded at approximately 31.1ms frame rate.

The features used as observations for the three sign components in our model
are given below:

— Handshape component. Data measured by 16 sensors of the Cyberglove, re-
porting the joint and abduction angles of the right hand’s fingers and thumb.
The data reported by the two sensors measuring wrist yaw and pitch were
not used because this data does not represent the finger configurations. The
feature vector for the handshape component is 16-dimensional.

— Location component. The 3-dimensional position of the right hand, oy, taken
to be the origin of the sensor’s coordinate frame. The feature vector for the
location component is 3-dimensional.

— Orientation component. The unit vector corresponding to the z-axis, z;;, of
the right hand sensor, with reference to the waist sensor’s coordinate frame.
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Recall from Section[[ T that the hand orientation is defined as the direction in
which the palm and fingers are pointing. Here however, we only extract fea-
tures measuring the palm direction because measurements pertaining to the
fingers are already extracted in the feature vector of the handshape compo-
nent. Figure[Glshows a schematic of how the sensor is mounted on the back of
the right hand. The x, y and z-axes of the right hand sensor’s coordinate frame
are shown. The sensor’s z-axis direction is roughly coincident with the direc-
tion in which the palm is pointing thus its corresponding unit vector indicate
the palm orientation. We note that left-right rotation (i.e. hand rotations in
the x-y plane) would not register a change in the z-axis direction. So our choice
of features is based on a simplifying assumption that the direction in which
the palm is pointing is more relevant than the left-right wrist rotation. The
feature vector for the orientation component is 3-dimensional.

@y

Fig. 6. Schematic representation of how the Polhemus tracker sensor is mounted on the
back of the right hand. The z-axis of the sensor’s coordinate frame is pointing into the
page, i.e. it is approximately coincident with the direction that the palm is facing.

4.3 Training and Testing on a Single Component

The training procedure for learning component-specific CPD parameters is as de-
scribed in Section[3.] Starting from initial model parameters for the H-HMM, the
iterative steps in the EM algorithm are repeated until it converged. Training uses
constrained sentence models reflecting the correct sign sequence in training sen-
tences. In the E-step, inferencing uses the forward interface inferencing algorithm
for DBNSs [12]. The observations features for all three components are as described
in Section

The trained H-HMM models for handshape, orientation and location compo-
nents are tested for sign recognition on the test sentence set. Inferencing during
testing obtains the most-probable assignment of values to all the hidden nodes in
the model. We use the forward interface algorithm in this decoding step. The sign
accuracy results for the three trained models are shown in Table 3l

Note that a sign is recognized as correct if values of all the sign-level nodes are
inferred correctly, i.e. the lexical word, directional verb inflection and temporal
aspect inflection values must all be correct. With this criterion, sign accuracy is
defined as follows. Let N denote the total number of signs appearing in the test
set, S5 the number of substitutions, Dy the number of deletions, and I the number
of insertions. The sign accuracy, Accg, is thus:
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Table 3. Test results on trained models for two Q-level H-HMMs for handshape, orien-
tation and location components

Trained model Aces (%) AccSents (%) Ds Ss Is Ns
Handshape component H-HMM 73.1 12.7 11 199 2 788
Orientation component H-HMM 85.0 36.6 16 95 7 788
Location component H-HMM  78.4 18.3 11 1509 788

Ns—8s—Ds— I

Acc, =
cc NS

Sentence accuracy, AccSents, is defined by the fraction of sentences without
any recognition errors.

4.4 Testing on Combined Model

A MH-HMM modelling the location, handshape and orientation components is
constructed by combining the component-specific CPD parameters learned in Sec-
tion @3] (also see SectionB1]). The MH-HMM is shown in Figure[dl We presented
the observed values of the component features Oy, for components ¢ = 1, 2, 3 from
the test set sentences. Synchronization between component streams at sign bound-
aries was enforced by setting S = 1, for 1 < t < T. We also set F! = 0 for
t=1...,T—1and as F} = 1. With these observed node values, the most proba-
ble sign sequence in each sentence was inferred using PF. The sign accuracy results
for this MH-HMM are shown in Table [ for different number of samples used in
the PF algorithm.

Table 4. Test results on MH-HMM combining trained models of location, handshape
and orientation components

Num. of Accs AccSentsDs Ss Is Ng
samples (%) (%)

3000 92.0 58.5 7 560 788
5000 92.4 62.0 4 533 788
10000 92.6 61.3 6 502 788
15000 92.6 62.7 5 503 788
20000 93.4 66.2 4 453 788
25000 93.9 68.3 5 421 788
30000 92.9 64.8 8 453 788
40000  93.7 68.3 6 404 788

The sign recognition accuracy is greatly improved compared to single compo-
nent decoding results (compare Table[3). Since more data is available as observed
features streams in the combined model, the improved sign recognition results is
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to be expected. The PF algorithm is expected to give better inferencing results
with increased number of samples, theoretically approaching results that would
be obtained using exact inferencing at the limit of infinite number of samples.
The results in Table@show an improvement in sentence accuracy, AccSents, with
increased number of samples. It might be worth increasing the number of sam-
ples beyond the maximum 40000 that we experimented with, to investigate if this
would produce further improvement in the sentence accuracy, which is currently
quite low considering the relatively high sign accuracy.

The correspondence between sample number and accuracy is however not seen
in the other accuracy measurements. The maximum sign accuracy (Accs) of 93.9%
was obtained with 25000 samples and not with the maximum number of 40000
samples that we ran experiments with. The maximum word accuracy (Ace,,) of
98.9% was also obtained with less than 40000 samples. Due to the stochastic na-
ture of the inferencing algorithm, we would have to run a few sets of experiments
with the same number of samples before we can conclude if it is indeed the case
that we get diminishing returns in sign and word accuracy beyond 20000 to 25000
samples.

5 Conclusions

We have shown decoding results on experimental sign vocabulary including signs
with complex and multiple inflection values. Best sign and sentence accuracies of
93.9% and 68.3% respectively indicate the feasibility of our approach using the
MH-HMM. We are currently working on modelling movement path attributes ex-
plicitly in the MH-HMM, including direction, shape, size and speed. Some features
currently being explored include curvature, centroid distance function and Fourier
transform based features.
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Abstract. This paper addresses the recovery of face models from stereo pairs
of images in the presence of foreign-body occlusions. In the proposed approach,
a 3D morphable model (3DMM) for faces is augmented by an occlusion map
defined on the model shape, and occlusion is detected with minimal computa-
tional overhead by incorporating robust estimators in the fitting process. Addi-
tionally, the method uses an explicit model for texture (or reflectance) in addition
to shape, which is in contrast to most existing multi-view methods that use a
shape model alone. We argue that both model components are required to han-
dle certain classes of occluders, and we present empirical results to support this
claim. In fact, the empirical results in this paper suggest that even in the absence
of occlusions, stereo reconstruction using existing shape-only face models can
perform poorly by some measures, and that the inclusion of an explicit texture
model may be worth its computational expense.

1 Introduction

Being able to automatically recognize faces, track them, and estimate their expression
and pose are important for many applications. Performing these tasks reliably requires
the ability to represent the appearance of faces over large variations in illumination and
viewpoint. It also requires the ability to model the effects of occlusions—both self-
occlusions caused by the face itself and occlusions caused by “foreign bodies” (eye
glasses, long facial hair, clothing, hands and limbs, etc.) in the environment.

[llumination effects can often be well-represented using purely image-based methods
(e.g. [TL2L3L4]), but to effectively handle extreme changes in 3D pose, one typically re-
quires a mechanism for “warping” 2D images. 3D morphable models (3DMMs), which
are parametric models of shape and reflectance, are useful for this purpose because they
explicitly represent 3D shape and therefore handle self-occlusions in a natural way.

In a 3D model-based approach, one is faced with the problem of finding the para-
meters of the model that best explain the input data. The estimated model parameters
can then be used to perform recognition, track the face, detect expressions, synthesize
new images, etc. The fitting problem is complicated in the presence of foreign-body
occluders, because unlike self-occlusions, the image effects induced by foreign bodies
cannot be explained by the face model.

In this paper we present a 3D model-based method for face reconstruction and recog-
nition that exploits stereo imaging to handle foreign body occlusions. In the proposed
approach, occlusion is represented using a single occlusion map defined on the 3D

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 31 2007.
(© Springer-Verlag Berlin Heidelberg 2007
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shape model, and this occlusion map is recovered efficiently by incorporating robust
estimators in the fitting process.

In addition to including an occlusion map, we differentiate between two types of
constraints for fitting a model to multiple views. According to the first constraint, each
image should agree with a given model’s shape and reflectance; and according to the
second, the images should agree with each other given the model’s shape. We find that
the importance of these two constraints (roughly speaking, the “texture match” and the
“stereo match”) varies depending on the type of foreign body occluders that are present.
We also find that even in the absence of occluders, explicitly enforcing the texture match
constraint significantly improves fitting accuracy in comparison to an approach that uses
the stereo match constraint alone (suggested in [5]]).

1.1 Related Work

3D Morphable Models (3DMMs) [6] use high resolution linear 3D shape and texture
models to represent faces. Typically, this model is fit to an input image by minimizing an
energy function that measures the difference between intensities in the observed image
and those predicted by the model. Recognition can be performed based on the model
parameters [7]] or by using the model to synthesize new views of the face in a canonical
pose and lighting configuration [[]].

Using a stereo pair for the fitting of a 3DMM imposes additional geometric con-
straints on the face shape, which can improve the quality of results. Also, by imposing
a stereo matching constraint, the fitting of the shape and texture parameters can be
decoupled [5]]. According to this approach, the shape parameters are recovered by mini-
mizing the per vertex intensity differences between two calibrated views, and the texture
is estimated separately using this shape. While the decoupling of shape and texture is
appealing from an efficiency standpoint, the results we show here suggest that there are
significant benefits to estimating both components jointly.

Explicit handling of foreign-body occlusions has been addressed for the case of
monocular fitting of 3DMMs in [9]], where a generalized EM algorithm is used to alter-
nate between the estimation of a visibility map given the model and the model parame-
ters given the visibility map. To account for spatial coherence of occluders the visibility
map is modeled by a Markov random field (MRF) on the image plane. In contrast, we
model occlusions using a visibility map on the surface, and approximate the occlusion
process using a robust estimator. While it gives up the preference for spatial coher-
ence, the proposed approach can be implemented with little computational overhead.
In addition, it can be easily extended to more views, since the occlusion map is on the
surface.

Also related to this work are 2D active appearance models (AAMs), which trade
precision for speed and are often used for tracking. 2D AAMs typically use low-
resolution 2D deformable shapes along with linear texture models. The fitting is done
by matching a warped face image (with the warping being given by the linear shape
model) against the linear texture model, and solving for the shape and texture parame-
ters that give the best fit. Performance can be improved using an extension to the inverse
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compositional image alignment algorithm [I1]], by including 3D constraints [12], or
by using multiple views [13}14]]. Fitting AAMs in the presence of occlusions can also
be approached using robust estimators [13]]. The main advantages of the 3D approach
over 2D AAMs are the ability to directly model lighting effects because it has access to
surface normals and to more easily handle self-occlusions.

2 Background

2.1 3D Morphable Models for Faces

As a 3D morphable model for faces, we use the shape and texture bases (3DFS-100)
made available by the University of Freiburg [6]]. These bases were obtained by first
concatenating the N vertices (or RGB color values in the case of texture) of each scan i
of a large set of high resolution 3D face scans into vectors (F'S; for shape, and FT; for
texture), and putting them into correspondence. That is, the vectors are made such that
the same entry in each vector corresponds to the same facial feature [16,[17,[18]]. These
vectors are denoted:

FSi=[XiY|Z}]..[X\YaZy]l. - FT; = [[RiGyBY)...[Ry Gy By ]

Principal component analysis (PCA) is performed on this set of vectors, and the most
significant eigenvectors are used as bases for shape and texture. Shape and texture are
then expressed as linear combinations of these basis elements:

m m
S=So+Y &S, T=Ty+ BT,
i=1 i=1

where Sy and Tj are the average face shape and texture and (Sy,...,5,) and (T3, ...,
T,,) are the eigenvectors of shape and texture respectively. Here, S;,T; € R3N. Thus,
in this model, faces are represented by the set of coefficients oo = (¢t ..., 04,) and
B = (Bi,...,Bn) that correspond to their shape and texture.

If one assumes the coefficients are drawn from independent normal distributions,
PCA also gives an estimate of their probability distributions;
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where 0; and ¥; are determined by the respective eigenvalues of the covariance matrices
of {FS;} and {FT;}.
2.2 Image Formation Model

We assume faces to be in or close to the space spanned by the shape and texture
bases of Sect. 2.1l Then, given a face’s shape parameters o and a suitable rigid body
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transformation (rotation R and translation ¢, that align the face model with the actual
face), the true color value (y(k)) of the face at the position corresponding to the face
model’s vertex k will equal that predicted by the model:

Y(k) ~ I (k), @)

where I,,,(k) is the RGB value of the texture at v; as given by the texture parameters f3,
and a suitable set of lighting parameters.

For a lighting model, we assume the surface is Lambertian, and use (Ramb, Gamb,
Bampb) for the ambient light color, (Rgir, Ggir, Bgir) for the directional light color, (Rogfset,
Gooffset, Boftset) for the color channels offsets, and [ for the directional light direction.
Then we have:

Im(k)R = Roffset + kR (Ramb +Rdir . (nk . l)), (3)

with similar definitions for the G,B channels. The symbol #; represents the k' RGB
value in the face model’s texture vector representation given the texture coefficients 3,
and ny, represents the surface normal at vy.

Assume we are given a stereo pair (I1,1) of face images captured from a pair of
calibrated cameras. Letting P; and P> denote the two camera projection matrices, and
assuming we are given the shape parameters o and rigid body transformation pa-
rameters (R,7), we have two available measurements of y(k). These can be written
L(PI(R(vi —c)+c+1)) and L(P(R(vik — ¢) + c+1)), where ¢ is the centroid of the
average face shape. Assuming that the cameras are radiometrically calibrated (i.e., have
the same exposure, white balance, etc.) with additive Gaussian noise, a reasonable esti-
mator for y(k) is:

k) = I R,1) & I(P(R(ve—c)+c+1)) ‘;IZ(PZ(R(Vk_C) +C+t)). @

Thus a simple approximation for the distribution of ,,,(k), given I}, I, ¢, R, f is a normal
distribution with mean I and standard deviation o; (say):

In(k) ~ NI (v R 1), 07). 5)

In addition, when ¢, >, R, are given, and again assuming that the cameras are ra-
diometrically calibrated, we can use the following model for the noisy observation in /;
of a vertex vy, that is visible in both images:

L(Pi(R(vg —c¢)+c+1)) ~N(L(Py(R(vg — ¢) + ¢ +1)), 0;). (6)

Note that if the cameras are not radiometrically calibrated, this can be generalized by
incorporating camera-dependent gains and offsets into /; and /.
For simplicity, we make use of the following notation in the next section:

p - the 6 parameters of the rigid body transformation (3 for R, 3 for ).
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7 - the 11 lighting parameters (3 for igy, 3 for iy, 3 for iy e, i={R,G,B}, and 2 for
D).
sk - the position of the k" model vertex given pose parameters (R, ) and shape parame-
ters o; sy = R(vg —c¢) +c+t.

3 Robust Stereo Fitting of 3DMMs

3.1 Joint Shape and Texture Stereo Fitting

We use an energy function that incorporates both a shape model and a texture model by
combining terms derived from Eqs.Bland[6] with regularization:

11 (Ps;) — L(Posy) || oo
[[11 (Pysk) 2(2k)HJr I

E= + @)
2 2
kjveev Os i=1 9
~ ~ - S~
Stereo Match Shape Prior
[ (k) = I(s2) > n i B?
2 2
O, =
kv eV ! i=1 /i
~ ) N~ 7

~ )
Texture Model Match ~ Texture Prior

Here, the symbol V is used to denote the set of vertices v; of the face model with
parameters (o, p) that are visible in both /; and 1.

Model-fitting is performed by finding parameters o, 3, p, T that minimize E. This
can be interpreted in a MAP framework as a search for parameters (co.,f3,p, 7) for which
the posterior P(c., B, p, 7|1, 1>) is maximal, and such an interpretation highlights the as-
sumptions underlying our approach. First, we expand the posterior as P(c,3,p,7|l1,5)=
P(o.p|l,Iy)- P(B,t|l1,L,0e,p). The first term is then rewritten P(c,p|l1, ) o
P(Ii|o,p, 1) - P(a), which by Bayes’ rule, assumes that o, p, I, are mutually indepen-
dent and that the distribution of face poses (p) is uniform. The assumption that shape
() and pose (p) are independent from I, may seem non-trivial. But without knowledge
of face texture (), little can be inferred about I, because any image I, can be explained
by a suitably selected texture.

Using Eq.[6l we write:

P(hle,p,h) o [] exp
k\vkEV

®)

_L[IL(Pisy) — B(Pasi) |
2 o} '
and using Eq. [3] (assuming the texture () and scene lighting (7) independent, and T
uniformly distributed), we write:

€)

—I(s 2
P(B. 7l .p) < P(B)- T] exp (_;|1m<k> ()| )

o7

Finally, we obtain the energy E by substituting Eqgs. [[l§] and [0 into our expression for
the posterior, taking the logarithm, negating it and ignoring constant factors.
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One can make the following observations about this energy function. First, suppose
one were to include only the last three terms in Eq.[Zl which would correspond to maxi-
mizing P(I,|a,B,p,7)-P(L|o,B,p,7)-P(c,B). This approach would not account for the
correlation between I; and I,. The two images are not independent given (o, f3,p,7)
because the true appearance of the face deviates from that given by the face model, and
consequently, the two prediction errors are correlated.

Second, suppose we were to ignore the third and the fourth terms in Eq.[7l This is the
approach taken in 3], and it corresponds to maximizing P(a, p|I;,I>) without including
a texture model. As we will show experimentally in Sect. [ this approach can perform
poorly because it does not necessarily ensure that important features (eyes, eyebrows,
lips) are properly aligned.

Finally, we can compare our approach to an uncalibrated case in which one has no in-
formation about the stereo cameras. In this case, separate pose parameters (pj, p2) could
be used for each image, and one might seek to maximize P(c., 3,7, p1,p2|I1, ). In this
case, by the same argument as in the first observation, /; and /, are still not independent
given «,f3,7,p1,p2, therefore maximizing P(I|o,B,t,01)- P(L|o,B,7,02)-P(a,B)
(which would be the trivial extension of the monocular fitting case to two images [6])
does not necessarily maximize P(o,f3,7,p1,02|11,52).

3.2 Handling Occlusion

While the approach in the previous section correctly handles cases of self-occlusion
(where one part of the face occludes another), it does not account for the possibility of
foreign-body occlusions. To handle such situations, we use a modified version of the
energy function in Eq.[Z introducing a robust estimator h,:

oS <|11 (Pus) = BP0 10 —21<sk>|2> ot 8B )
klveev O O =10 =1V

This modification requires little change in the optimization procedure, and allows
the fitting to be significantly more robust to foreign-body occlusions (see Sect. .2).
Intuitively, by introducing the robust estimator we are limiting the impact in the energy
function of vertices whose stereo matching term or texture matching term are high.
More formally, this approach can be justified by introducing a binary occlusion map
0:{1,..,N} — {0,1}", defined on the set of all vertices of the face model. This map
dictates whether a vertex of the face model is occluded by a foreign-body in at least
one of the images (O(k) = 1) or not occluded in either (O(k) = 0). Thus, the image
formation model is altered so that the visible parts of the face present in the images are
generated only by vertices vy for which O(k) = 0.

In this setting, it can be shown that minimizing E’ corresponds to searching for
o,B.p,t,0 for which P(a, B,p,7,0|l;,1) is maximal. Again, we can write P(o., 3, p,
7,0|l,L)=P(a,p,0\l,L)-P(B,t|l1,L, o, p,0). We expand the first term by making
the same assumptions as those used in the previous section, obtaining P(ct, p, O|I}, 1) =<
P(Ii|o,p,0,5) - P(ex,0). The term P(I;|ct,p,0,1) is then approximated as in Eq.[8]
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where the product is now over {k|v; € V,O(k) = 0}. In favor of simplicity and efficiency,
we ignore spatial coherence of occlusions, and assume O(k) ~ i.i.d. Bernoulli, obtaining
the following prior on O:

P(0)e< [T exp(=n,-O(k)). (n
klveVv
Using this prior avoids the trivial labeling of all vertices being occluded during the
optimization process.

Combining these terms and assuming the shape (o) and occlusion map (O) to be
independent, we obtain an expression for P(c, p,O|l},1>). Substituting this expression
into the posterior along with an expression for the posterior’s second term similar to
Eq. 0l (but with the product over {k|v; € V,0(k) = 0}, one sees that maximizing the
posterior corresponds to minimizing:

1" < az < ﬂz
E'= 3 flep.p.t.00+3 5+3 75, (12)
klviev =107 =1
where
f(aaﬂupvraouk):g(avﬁvparvk)'(1_0(k))+2n0'0(k)7 (13)
and 5 _ 5
L (P — DL (P Ly(k)—1
s preiy = MBS LB @ =TI
Gx Gt
The minimization of E” can be rearranged as:
B m OC2 m 2
min E” = min {min fla,B,p,7,0,k)} + L4+ ! (15)
o,B,p,7,0 a,B,p,r{ o {k\\gelv ( ﬁ p )} ;Giz g{ }/1.2
(Y helapop.rih+3 %+ 3P
= min hig(a,B,p,t.k), k) + L+ ! (16)
BPT ey e

where
h(g(a,B,p,7,k), k) = gzg{g{g(ayﬂpmk) (1=0(k))+2n,-0(k)}.  (17)

Relaxing the binary process O(k) to an outlier process that varies continuously 0 <
0,(k) < 1, we can approximate (g, k) by a robust function &,

e e
ha(g) = —0, - In((1—exp(— ) -exp(— & )+exp(— 7)) (18)
o G{) G{)
with suitable parameters e, and ©,. These parameters are determined empirically to
provide a smooth approximation of the min function (see Fig.[I). This leads to E’ as in
Eq. where the minimization is over a,f3,p,7.
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Fig. 1. Robust estimator h,(g) (Eq. used to handle foreign-body occlusions in the fitting
process: (a) ¢, = 300,0, =1 (b) ¢, = 300, 0, = 50

Following optimization, the occlusion map is recovered from (for v € V):

0" (k) = 1, if hy(g(a”, B",p", T",k)) = 21y — &
0*(k) = 0’ ifhd(g<a*7ﬁ*7p*7r*7k)) < 2770_5’

where
(o*,B%,p", %) = arg min E’. (19)

a,B.p,t

3.3 On Foreign Body Occlusions

In a stereo setup, there can be several cases of foreign-body occlusion of a vertex of the
face model. We can classify these cases with respect to the positioning of the occluder
in (see Fig.2): half-occlusion (H O), where the vertex is occluded in one of 11 or I; full-
occlusion-near (F'O,), where the vertex is occluded in both /; and I, and the occluding
object is close to the face; and full-occlusion-far (F'Oy), where the occluder is far from
the face relative to the face size. We can also classify occluders with respect to their
texture, which can be one of: texture-less (non-skincolor); texture-less (skincolor); and
textured.

Depending on the type of occlusion, we expect either the stereo match term or the
texture match term to play a more prominent role in the fitting process (see Table[I)). For
example, in the case of half-occlusion (HO) by a non-skinlike surface, one can expect
the stereo match term to provide an important cue as to whether a vertex is occluded.
This is because the observed intensities at the projections of a half-occluded vertex cor-
respond to observations of two very different surfaces. When the occlusion is of type
full-occlusion-near (F'O,) on the other hand, the stereo match term will not provide
much help in determining an occlusion because the two observed intensities will come
from nearby locations on the occluder and will be very similar. In this case, provided
that the occluder has non-skinlike color, the texture match will be the most helpful in
determining its presence. Of course, when the occluder lacks texture and is skinlike,
there is little visual information to discriminate between it and the face.

Experimental results are shown in Sect. .2
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2 I2 IZ
Fig.2. Categories of foreign-body occlusions. From left to right, occlusions can be one of:

half-occlusion (HO), full-occlusion-near (FOy), full-occlusion-far (FOy). The stereo and texture
terms play different roles in each case (see Table[T)).

Table 1. Most relevant terms in the energy function for each of the occlusion cases: S for stereo
match term and T for texture match term (see Fig. D)

Occluder classification HO FO, FOy
texture-less (non-skincolor) S T T
texture-less (skincolor) X X X
textured S T S+T

3.4 Optimization Procedure

Initial Fit. Like previous approaches [317]], we assume that either by user selection, or
by means of an automated detection process, image coordinates of a subset of specific
feature points of the face (e.g. corners of the eyes, corners of the mouth, tip of the nose,
corners of the ears) in both I} and I, are available. (Some of the feature points may be
occluded in one or both images).

Let ji,.., j, denote the indices of the vertices in the face model corresponding to
these feature points. Starting from the average shape parameters (o« = 0), we use a
quasi-newton gradient descent method to minimize

Ef= Y &illPisj,— puil 12+ 82| |Pas, — pail I, (20)
i=1,..,p
and obtain a rough initial estimate of the shape and rigid body transformation parame-
ters. Here, &;; = 1 if the i’ feature is visible in image /; and O otherwise (and similarly
for &; and 1), py; is the image coordinate of the i'" feature in image I;, and py; is the
image coordinate of the /" feature in image .

Optimization. For comparison purposes we evaluate the fitting performance of E and
E' with and without the texture model terms. In experiments where we utilize only
the stereo terms in E (or E’), we start with model parameters ¢, p from the initial fit.
In experiments that include texture we also start with the average texture parameters
(B = 0), and lighting parameters T such that iy, = 1, igir = 1 (i.e., white ambient and
directional lights), and iyser = O (zero offset), where i = R, G, B. The lighting direction
[ is initialized to be the bisector of the two cameras viewing directions.
We minimize:
E+A-Ey 21

with respect to the suitable parameters, using a stochastic quasi-newton gradient descent
method.
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To avoid local minima, we use a coarse-to-fine approach, with 3 levels of resolution.
At the coarsest resolution, we use versions of /1 and /, that are downsampled by a factor
of four, together with a corresponding low resolution version of the 3D face model. As
we progress toward the finest level of resolution, we use smaller and smaller values for
A, o5 and oy, which gives smaller weights to the feature term and the shape and tex-
ture priors. At regular intervals (more frequently at coarser levels), we recompute the
self-occluded vertices (and thus V') as well as the normals (7). Instead of computing
the energy using all the vertices v, € V, at each iteration we randomly select a sub-set
of these vertices on which to compute the energy (we use 1000, 2000 and 3000, at each
level of resolution). In this selection process, we select vertices with probability propor-
tional to the average (over the stereo pair) foreshortened area of the patch around them.
When we utilize the complete E or E’, we sample at the baricenters of the triangles
of the mesh instead of the vertices because that allows for easier computation of the
gradient of the energy. In this case, both V and the occlusion map are defined over the
set of triangles, and k indexes the triangles that compose the model.

4 Experimental Results

We evaluated the procedure of Sect. 3.4] using the original energy (E) and the robust
energy (E'), along with modifications of these energies obtained by excluding the tex-
ture terms. Throughout this section, we refer to these as stereo+ texture, stereo, robust
stereo-+texture, and robust stereo, respectively. To ensure a valid comparison between
the different cases, we used equivalent parameters for the feature match weight (1) and
the model priors (o5 and ;) in each experiment. Only the first 40 shape and texture
basis vectors were used, since this was found to provide adequate results.

4.1 Accuracy in the Absence of Occlusions

To evaluate the benefits of incorporating a texture model in the absence of occlusions,
testing was performed on a subset of sixty individuals from the K.U. Leuven stereo face
database [J3]], which contains stereo pairs of each individual in eight different positions.
We obtained fitting results using the stereo and the stereo+texture methods for all eight
poses in each of the sixty people, for a total of 480 model fits. Note that the stereo fitting
approach is that proposed in [3]].

Figures[Bland@lexemplify the differences between the fits obtained using stereo (first
two terms of E) and stereo+texture (E). At first glance, the results in Fig. @] suggest
that the shape estimates using both methods are quite similar. The stereo matching
cost (Sjy.ev 1 Py ‘Yk)R,I‘Z(Pz‘Yk)‘|2) was computed to be 280.77 for the stereo method and
340.17 for the stereo+texture method, so the shape obtained using only the stereo term
is better in terms of the per-vertex stereo intensity match. However, from Fig. @ it is
clear that the eye, eyebrow and mouth alignment between the model and the images is
significantly more accurate when the texture model is included.

These results suggest that either approach may be sufficient if the desired output is
a depth map or 3D model for image synthesis. For recognition, however, where one
links shape parameters to identity, it is important for features in the fitted model to be



Model-Based Stereo with Occlusions 41

Fig. 3. Comparison of a fit using both stereo and texture to that obtained using stereo alone. Rows
indicate left and right images of the stereo pair. First column: shape estimate using stereo, second
column: input images, third column: shape estimate using stereo and texture.

Fig.4. Same comparison as that in Fig. [3l but mapped with estimated textures and rendered
semi-transparently over input images. While both the shape obtained using stereo (top) and that
obtained using stereo and texture (bottom) provide reasonable depth maps for the input stereo
pair (Fig.[3), only the joint use of stereo and texture ensures feature alignment.

aligned with the features in the database models. Our experiments suggest that one way
to ensure this alignment is to include a texture model in the fitting procedure.

The same effect can be observed by studying the distribution of the 480 recovered
shape models (60 individuals under 8 poses) in the forty-dimensional whitened shape
parameter space. Two statistics relate to the quality of the fitting procedure from a recog-
nition standpoint. First, for a single individual, we would like the difference between
the fits for different poses to be small. Second, we would like the difference between the
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Fig.5. Models are fit to an input stereo pair (top row) using robust stereo (left columns) and
robust stereo and texture (right columns). Here, the face is half-occluded (occluder type HO)
by a textureless object. The results from the two methods are very similar, showing that the
stereo match term alone suffices for detecting the occluder. The bottom row shows the estimated
occlusion map with black indicating foreign-body occlusion (O(k) = 1), white indicating visible
vertices (O(k) = 0 and vy, € V), and red indicating self-occlusion (vi & V).

fits for distinct individuals to be large. These can be measured based on the within-class
(within-subject) scatter matrix (S,,) and the between-class scatter matrix (Sj). Roughly
speaking, the larger the determinant and trace of (S, 'S,) are, the more accurate a classi-
fier based on these fits will be. Using results from the 480 fits we found the determinants
of S;le to be 2.9640e > and 1.3418¢~!! and the traces of S;le to be 104.0478 and
69.4101 for the stereo+texture method and the stereo method, respectively. These quan-
titative results support the qualitative observations in Figs. Bland [ and suggest that fits
obtained with the inclusion of the texture model are significantly more robust to pose
changes.

4.2 Accuracy with Occlusions

We also tested the occlusion cases described in Sect. 3.3 by applying the robust fitting
process to captured data. For these fitting results, a value of n, = 250 was used for the
robust stereo method, and a value of n, = 800 was used for the robust stereo+texture
method.

Figure [3 shows results obtained using the robust stereo and robust stereo+texture
method in the case of half-occlusion (case HO) by a textureless foreign body. As de-
scribed in Sect. in this case we expect the results for both methods to be similar
because the stereo cue is sufficient to detect the occluder. As shown in the figure, this
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Fig. 6. Same as in Fig. Al but for the case of a textured foreign-body occluder that is close to
the face (occluder of type FO,,). In this case, as evidenced by the occlusion map on the bottom
left, the stereo match term alone is not enough to detect the occluder, and the recovered model is
inaccurate. Including the texture model (bottom right) significantly improves the result.

Fig.7. Comparison of the shapes recovered using robust stereo (first row) and robust stereo
and texture (second row) in cases of (from left to right) no occlusion, half-occlusion, and full-
occlusion-near. Here, the estimates are overlayed on top of one of their input images. While stereo
handles the half occlusion case reasonably well, only combined use of stereo and texture ensures

that the recovered model is close to the ‘ground truth’ shape—at least in its visible regions—in
both occlusion cases.
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is indeed the case. Notice that the occlusion map captures not only the occluder, but
also artifacts that are not predicted by the model, including specular highlights and cast
shadows.

Figure[6l shows similar results for the case of a textured occluder that is close to the
surface (case F'O,). In this case, the stereo constraint is insufficient for detecting the
occluder, and the addition of a texture term provides substantial improvement.

The results from the two occlusion cases are compared to the ‘ground truth’ shape
obtained in the absence of occlusion in Fig. [l The results obtained by the robust
stereo+texture method are relatively consistent over all cases, but the same cannot be
said for those obtained using the stereo match alone. Notice that in all cases, the recov-
ered models deviate from the unoccluded model in the unobserved regions of the face.
This is to be expected, since there is no shape or texture information available in these
regions.

5 Conclusions

We have presented a method for the recovery of face models from stereo pairs of images
in the presence of foreign-body occlusions. In this approach, a face model (a 3DMM)
is augmented by an occlusion map defined on the model shape, and foreign-body oc-
clusions are detected efficiently using robust estimators. The approach uses an explicit
model for texture in addition to shape in an energy-based stereo fitting process.

Experimental results demonstrate robustness to occlusions, and they highlight the
relative importance of the stereo match term and the texture match term in the energy.
They suggest that both shape and texture components of a 3DMM should be incorpo-
rated if one seeks to detect general classes of occluders. The results also suggest that
even in the absence of foreign-body occlusions, an explicit texture model can signifi-
cantly improve stereo fitting results. The texture model provides one way of ensuring
proper alignment of features (eyes, eyebrows, lips, etc) in the fitted model.

Another possible approach to achieve alignment, and one we plan to explore in the
future, is to use only shape in the stereo fitting process and to incorporate a stereo
matching term that is more sophisticated than simple per-vertex intensity differences.
This is the approach taken in [[19], for example, where window-based matching is em-
ployed. One may also look at other feature spaces for fitting (e.g. [20]), as well as better
models for the distribution of the error in the modeling of texture (Eq. Q).

Finally, if one is to perform recognition based on models obtained in the presence of
occlusions, one would likely want a second model refinement step in which one breaks
the initial model into segments [6] in a way that respects the occlusion boundaries. The
goal would then be to infer identity using only the unoccluded segments of the model.
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Abstract. We propose a novel method for 3D head reconstruction and
view-invariant recognition from single 2D images. We employ a deter-
ministic Shape From Shading (SFS) method with initial conditions esti-
mated by Hybrid Principal Component Analysis (HPCA) and multi-level
global optimization with error-dependent smoothness and integrability
constraints. Our HPCA algorithm provides initial estimates of 3D range
mapping for the SFS optimization, which is quite accurate and yields
much improved 3D head reconstruction. The paper also includes signif-
icant contributions in novel approaches to global optimization and in
SFS handling of variable and unknown surface albedo, a problem with
unsatisfactory solutions by prevalent SFS methods. In the experiments,
we reconstruct 3D head range images from 2D single images in different
views. The 3D reconstructions are then used to recognize stored model
persons. Empirical results show that our HPCA based SF'S method pro-
vides 3D head reconstructions that notably improve the accuracy com-
pared to other approaches. 3D reconstructions derived from side view
(profile) images of 40 persons are tested against 80 3D head models and
a recognition rate of over 90% is achieved. Such a capability was not
demonstrated by any other method we are aware of.

Keywords: 3D face reconstruction, face recognition, Hybrid PCA, Shape
From Shading, Optimization.

1 Introduction

3D face reconstruction from one or multiple 2D face images is an interesting
topic that receives a lot of attention. Blanz and Vetter proposed a morphable
model for 3D faces reconstruction using an analysis-by-synthesis approach in [4]
and later developed a face recognition method in [5], which is based on matching
eigenvector coefficients. Jiang et al. [I0] used detected face features to determine
coefficients for synthesis from shape eigenvectors. Hu et al. [8] utilized a generic
3D face model and detected face features to reconstruct 3D faces with the help
of a Shape From Shading (SFS) method and Radial Basis Functions (RBFs).
The last two methods reconstruct faces only from frontal face images. In addi-
tion, surface albedo was assumed constant in [§], which led to inaccurate height

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 46 2007.
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on some feature points. Smith and Hancock [13] used an image normalization
algorithm to decouple surface normal directions from variable surface albedo. Il-
lumination cones and a Point Distribution Model were employed in a geometric
SEF'S method to refine estimated normals. However, the overall performance of
this method is determined by the accuracy of the normalization process. As we
can see from above, pose and variable albedo are major concerns in 3D face recon-
struction. We propose in this paper a novel method for 3D head reconstruction
by SFS which addresses these concerns. Our method reconstructs facial range
images from 2D face images in any pose. Furthermore, our approach provides
the capability to estimate variable surface albedo. Whereas, such a capability is
absent in most of the prevalent SF'S methods.

Research on SF'S has been conducted for decades. Ikeuchi and Horn [J] pro-
posed to recover shape information by minimizing a cost function. The stereo-
graphic plane was employed in their method to express orientations of surface
patches. In [7], Horn and Brooks applied the calculus of variations to solve
SFS problems. Zheng and Chellappa [I7] proposed to estimate illumination di-
rection, albedo, and surface shape by minimizing a cost function with a new
smoothness constraint, which was aimed at decreasing the gradient difference
between the reconstructed intensity image and the input image. Worthington
and Hancock [T5] replaced estimated normals with the closest normalized vector
on illumination cones to ensure accuracy of recovered surface normals. Samaras
and Metaxas [I1] incorporated illumination constraints with deformable mod-
els in resolving SF'S problems. Crouzil et al. [6] developed a multiresolution SF'S
method, in which cost functions were minimized by fuzing deterministic and sto-
chastic minimization approaches. During the examination of these SF'S methods,
we find that surface albedo was assumed either constant or given. Assuming con-
stant albedo results in inaccurate reconstruction of surfaces with variable albedo
as was demonstrated by the experiments in [16].

Existing SF'S methods almost always yield unsatisfactory results when applied
to realistic imagery when the initial estimation of the true surface is unavailable
or inaccurate. In experiments described in this paper, we demonstrate that pro-
viding an accurate initial estimation in SFS methods yields much better results.
The Hybrid Principal Component Analysis algorithm provides head surface es-
timations which are quite accurate. These estimations serve as initial conditions
for our multiple-level optimization. The introduction of HPCA and the multiple-
level global optimization combined with albedo estimation, are the innovative
parts of our approach.

The rest of the paper is arranged as follows: The HPCA algorithm is described
in section 2; In section 3, we present results from HPCA; section 4 describes the
SFS method; section 5 presents SE'S results; section 6 concludes the paper.

2 Hybrid Principle Component Analysis

In this section, we describe the HPCA algorithm. To perform the HPCA algo-
rithm, we need a set of M training images. Each image is a hybrid composed of
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a 2D [n x m] gray scale image and a corresponding [n x m] range image. These
training images are lexicographically reordered into M pairs of vectors, denoted
by

{ﬁvr_{} =12, M (1)

where ﬁ) is the vector that represents the i'" gray scale image and 7; is the
vector that represents the corresponding range image. These two vectors are
concatenated to generate a 2nm dimensional hybrid vector h“

n= (7)) ©)

The training set H for HPCA consists of all the M hybrid vectors E) The mean
vector Ji;, and covariance matrix O} for H are calculated as follows

| M
-
i =y 2R ®)
| M
7 —\(7 =T
Ch= 1y ;(hi — Bn)(hi — Bi7) (4)
Next, the eigenvectors {v;;j = 1,2,---,w} for C}, are computed. w < 2nm is

the rank of Cj. The first P eigenvectors, which correspond to the P largest
eigenvalues, are taken as the principal eigenvectors. Every eigenvector 7 is then
split into two sub- Vectors with nm dlmensmns each. We name the two sub-vectors
as the top vector t and the bottom vector b respectively, i.e.

T
w=(5"5")  TeRr"™b er™ (5)
The vector set {Z;} corresponds to the gray scale images while the set {b_;}

corresponds to the range images. Similarly, the mean vector jz, is split into two
sub-vectors as well.

T
1u’h - (_)T71TT’)T) (6)
We also perform PCA on the set of range images {77;¢ = 1,2,---, M} and
obtain P principal eigenvectors {€;;j = 1,2,---, P} for the range image space

S, € R™. Obviously, The set {€;} for S, would be different from the set {b_;}
for the hybrid space. However, we can approximate {€; } with {b_;} , i.e., we use
{b_;} as an estimation of the principal eigenvectors for the range image space S,..
As shown in the experiments, this approximation is pretty accurate. Similarly,
we use {E)} as an estimation of the principal eigenvectors of the gray scale image
space S, € R™™.

The underlymg principle of HPCA is that a | range image 7 can be approx-
imated by a linear combination of the set {b } using the prOJectlon coefhi-
cients obtained by projecting the corresponding gray scale image f onto the
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»o¢

a

Fig. 1. (a) 3 pairs of training images (Top row - Range images; Bottom row - Corre-
sponding gray scale images); (b) A test image

set {#;} € S,, namely

T =14+ (7)
= d=1"")'T"(T - i) 8)
— T =Bd+pm (9)

—

where T = (t1 2 E;), B = (b1 bo IZ) and d is the coefficient vector.

3 Experimental Results for HPCA

To achieve reconstruction of heads in different poses, we need a set of gray scale
images and range images taken in intervals of few degrees about the vertical axes
of the heads. For this purpose, we synthesize the gray scale images from a 3D
head model library provided by USF [I]. A few synthetic gray scale images are
illustrated in Fig.[[l These synthetic images still look realistic since the variable
albedo is taken also into account.

The library from USF includes 100 3D head models and corresponding texture
maps. We use 40 head models in the experiment. Every model is rotated about
the vertical axis from -90 to +90 degrees in a step size of 5 degrees. A gray
scale image and a range image are generated for every pose, which leads to 1480
hybrids for all 40 models. Few pairs of training images are illustrated in Fig. [Tl

It is straightforward to obtain model range images while it is more difficult
to obtain model gray scale images. Here we need to make two assumptions:

1. Head surfaces exhibit Lambertian reflectance.
2. The light is perpendicular to the image plane.
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With these two assumptions, the gray scale value at a point A can be calculated
as
T

Ra=pa(l -®)=u(l ) (10)

where p is the illuminant strength, « is the surfac_e> albedo, u is the composite
albedo [I7] representing the product of p and a, [ = (0,0,1) represents the
illuminant direction, and 7 is the normalized surface normal at point A.

1
= X (_p7 —-q, 1)T 11)
V1+p?+¢? (

p and ¢ are the surface derivatives along x and y axes respectively. Substitute

EqITl into EqI0, we get

B pa B U
Vitpr+¢  J1+p2+¢?

p = 1 is used in our experiment. As for the surface albedo «, note that there
is a texture map for every model in the library from USF. We map the texture
to the 3D model and take the normalized gray scale value at every point as its
albedo. The gray scale images for testing are obtained in a similar manner from
3D head models which are not included in the training. A test image is shown in
Figllb. Two views of the corresponding original range image are shown in Fig[Zh
and[2d. The range image reconstructed by HPCA is illustrated in FiglZb and 2k.
As can be observed, the reconstruction is close to the original range image.

Ra (12)

Fig. 2. (a)&(d) The original range image in x-y and 3D view; (b)&(e) The recon-
structed range image from HPCA in x-y and 3D view. This reconstruction serves as
initial estimation for the optimization algorithm; (c)&(f) Are the x-y and 3D view of
the final reconstruction after applying the SFS optimization.
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4 Shape from Shading Reconstruction

Starting from the initial reconstruction provided by HPCA, we further improve
the reconstruction using a novel SFS method. SFS is usually modeled as an
optimization problem [I6], in which cost functions are minimized subject to
various constraints. Existing methods either try to estimate the surface height
directly [I4], or to divide the problem into two subproblems[6] [I5] . First, to
compute the surface’s gradient field and then to calculate surface height from
the gradient field. Our method belongs to the second category.

Henceforth, we refer to the estimated 3D surface as z(z,y), where z is the
surface height and z,y are coordinates. The two components of the gradient
field are

p(z,y) = 0z(z,y)/0x  q(z,y) = 0z(z,y)/dy (13)

We present the fundamental equation for SFS, Image Irradiance Equation [7],
as

I(z,y) = R(T ,p(z,y), q(z,y)) (14)

where R and I are the reflectance map and the input gray scale image respec-
tively, and T is the illuminant direction. The cost function shown below is
minimized to find the gradient field in image domain f2.

1(p.q // T, plz,y), q(w,y))—f(%y)}dedy

z,y) Iz ) 2dx
// \/1+p (z,y) + ¢*(z,y) f(y) dedy
(15)

To get a well-posed solution, an integrability constraint and a smoothness con-
straint are usually added [7] [6] and the augmented cost function is given below.

Ca(p,q) = Ci(p,q) + \i //Q[py(x’ Y) — gz (z,y)]*dady
W / /Q (02 (2, ) + P (2, 9) + (2, )

+ q2(z,y)dady (16)

where )\; is the integrability factor and Ay; is the smoothing factor. Both factors
are set to positive values. The second and the third terms on the right-hand side
represent the integrability constraint and the smoothness constraint respectively.

To handle the variable albedo of faces, we add to Ca(p, q) a smoothness con-
straint for the composite albedo u and estimate the gradient field and u simul-
taneously. The new constraint for « is inspired by the observation that abrupt
changes of albedo usually only occur on boundaries between special face regions
(e.g. lips, eyebrows, eyes or pigmentation). Other than that, the albedo usually
varies smoothly, especially on cheeks and foreheads. As a matter of fact, even
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albedo inside some special regions, e.g. lips, doesn’t vary abruptly. As for illu-
minant strength, in most cases it remains constant or varies smoothly on faces.
Therefore, u should also vary smoothly on most face regions. Hence, imposing
a smoothness constraint on w is justified almost everywhere. The cost function
with the new constraint is

C = Cop.q) + Aea / /Q b2z, ) + w2 (z, )] dady (17)

where A4 is the smoothing factor for u.

Next we will convert the cost function into discrete form. Hereafter we will
use subscripts to indicate the coordinates of pixels. We apply either forward or
backward finite differences in the conversion. Without loss of generality, we will
discuss the case where forward finite differences are applied. According to the
definition of forward finite differences, we have

Peliy) =0, +1) —p(i,75) = pijr1 — Pij (18)
Pyl =Pl +1,7) = p(i,J) = piy1,j — Dij (19)

Hence, Eq[I7 changes into

CZ Z Ci,j (20)

(i,J)ED
where @ is the discrete image domain and ¢; ; is the cost component for the pixel
at (i,4) given by:
Wi
cij = | S
\/1 it a4,

+ Xl (pit1g — pig) = (@1 — 4ig))”

+ Ast[(Pig1j — i) + i1 — pij)?

+ (@1 — ¢i)° + (@1 — 4i)°]

+ Nso(wirrj — ui)® + (uirn —ui)?]

— I )?

(21)

To minimize the cost function C with respect to (p; ;,¢i,;, ui,j) at every pixel
is very difficult if the image is large. Therefore, we choose to split a large image
into small patches and run the optimization patch by patch. We use 10 x 10
patches in our experiment. Starting from the lower right corner of the input
image, a window is moved row-wise from right to left, from bottom to top. The
window is moved by 5 pixels every time so that the patch in the window always
has a half overlapping with any neighboring patch. When the upper left corner
is reached, the window is moved in the other direction from left to right, from
top to bottom. In this way, the window is moved back-and-forth between the two
corners and the cost on every patch is minimized. The iteration is stopped when
the norm of the changes in the gradient field between two iterations is smaller
than a predefined threshold.
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We assume that the gradients on the global boundary of an image are zero.
when the window is moved from the lower right corner to the upper left corner,
the right and bottom boundary conditions of patches can be obtained from ei-
ther the image boundary conditions or from results of previous patches. That
allows us to impose these two boundary conditions during the optimization. As
explained in the appendix, we apply forward finite differences in this case to
simplify the calculation of the gradient for the cost function. when the window
is moved from the upper left corner to the lower right corner, the left and top
boundary conditions of patches are available instead. In this case, these two
boundary conditions are imposed and then backward finite differences are ap-
plied.

Direct minimization of the cost function is performed on those patches using
Nonlinear Polak-Ribiere Conjugate Gradient method [I2]. For every patch, we
specify the initial vector set for the optimization as

0 0) (0) (0
VO = (15} = {0 015wl pes) (22)
where the gradient field (pgg), qi(?j))(i’j)e¢ is derived from the initial range image

provided by HPCA and uz(-?j) is set to zero, i.e. (ugoj) = 0)(i,j)es. Before run-

ning the optimization, we smooth the gradient field using a smoothing filter. By
smoothing the gradient field, the cost function surface also becomes smoother.
If the smoothing is large enough, all the local minima are eliminated leaving
only the global minimum. Beginning with the smoothed »(?) and an initial set
of constraint factors (\;, As1, As2), the Nonlinear Polak-Ribiere Conjugate Gra-
dient method is carried out to find a minimum of the cost function and the
corresponding vector set (1), Next, the set of constraint factors are reduced by
a factor of 2 and a smaller smoothing filter is applied to smooth the gradient field
a bit less. When the optimization is repeated, we initiate it with the previous
minimum location, which is quite close to the true global minimum. Each itera-
tion, with less smoothing, achieves more accurate minimum location. After each
iteration, the constraint factors are reduced by half and the size of the smoothing
filter is reduced as well before being applied to the gradient field. The process is
stopped when the constraint factors fall below predefined thresholds. After that,
the factors are set to zero (no constraints are imposed) and a final iteration of
minimization is carried out on each pixel individually. No smoothing filter is
applied in this iteration as well. Removing constraints allows the gradient field
and the composite albedo to vary more freely to account for abrupt changes on
the face.

Evidently, patches on faces have different smoothness. Another advantage of
our patch-by-patch method is that different initial constraint factors can be ap-
plied to handle different smoothness. The smoothness can be roughly estimated
from the range £ and the standard deviation o of the gray scale values in a
patch, which is taken from the normalized input image. The smaller ¢ and o,
the smoother the patch is. Therefore, large factors are used if £ and o are small.
On the other hand, smaller factors are used if £ and o are large.
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The Nonlinear Polak-Ribiere Conjugate Gradient method is outlined as fol-
lows [12]:

1. ¢ =50 = —_vC (1) where VC(v(?) is the gradient of the cost function
at the vector set v(?). Details on gradient calculation can be found in the
appendix.

2. Perform line search to find a value v(™) that minimizes C'(v(™) +~("™) g(m))

using the Secant method. v(™) is the vector set at iteration m(m = 0,1,2, - - -)

p(mH1) — (m) 4 ~(m) g(m)

sm+l) — _yCO(pim+D)

(m+1)\T ( (m+1)
1) _ (s ) (s -
6(m+ ) - max{ (S(nz))Ts(n'L)

g(m+1) _ s(m+1) + 6(m+1)g(m)

sm)) O}

S Ot

The error minimization is stopped when [|g("*+1)|| falls below a predefined thresh-
old.

After the gradient field is estimated, we calculate the final surface using the
M-estimators algorithm [2].

5 Experimental Results

Results after SF'S optimization are shown in FiglPk and Figl2f. Compared to the
HPCA results, we can see that details on the face are improved and noise is
reduced significantly. In addition, we can also observe that the reconstruction is
very close to the original range image. Another example that is reconstructed
from a frontal view image is illustrated in Fig[3l

To verify the reconstruction accuracy, we further use the reconstructions in
face recognition experiments, in which the reconstructed range images are tested
against 3D head models. 40 profile images are synthesized from 40 new 3D head
models that are not included in the training. Reconstructions are obtained for
those images and tested against the 40 new models plus those used in training.
The subject for a reconstructed range image is recognized by a recognition pro-
gram based on the Tterative Closest Point algorithm [3]. 37 out of 40 test images
are recognized correctly. The recognition rate is 92%, which is satisfactory for
such a hard task, in which 2D images are tested against 3D models. The good

Fig. 3. (a) The test image; (b)The original range image; (c) Reconstruction after SE'S
optimization
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performance on recognition demonstrates the accuracy of our reconstruction
method as well.

6 Conclusions

We describe in this paper a novel method for 3D head reconstruction and view-
invariant recognition, which is based on Shape From Shading (SFS) combined
with Hybrid Principal Component Analysis (HPCA). Our HPCA algorithm pro-
vides initial estimates of 3D range mapping for the SFS optimization, which is
quite accurate and yields much improved 3D head reconstruction. We also em-
ploy in the SF'S method a novel multi-level global optimization approach with
error-dependent smoothness and integrability constraints. Additional contribu-
tion of our paper is the successful handling of variable and unknown surface
albedo in SFS. Experimental results show that our HPCA based SFS method
provides accurate 3D head reconstructions and high recognition rates. Our work
could have many practical applications such as person recognition from side
views when only frontal views are available for modeling.
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Appendix: Gradient Calculation for the Cost Function in
Eq20

Here we demonstrate how to calculate the gradient of the cost function C' in
EqR0with respect to variables p; ;, g; j, u;,; for (i,7) € . We limit our discussion
here to patches with the right and bottom boundary conditions imposed. Similar
derivation can be developed for patches when top and left boundary conditions
are imposed. Without loss of generality, we will demonstrate the calculation
of the derivative with respect to p; ;. Due to the application of forward finite
differences, there are 4 different cases for pixels in a IV x N patch.

1. For pixels (4, ) where i,j # 1, N: from Eq[I8 and [[9, we know that p; ; is
involved in the derivative approximation at and only at these 3 locations:
(i,7), (i —1,9),(i,5 — 1). For example, at (i — 1, 7),
py‘(i—l,j) =DPij —Pi-1,j

oC Oci j Oci—1,j + Oci,j—1

Hence, Opi; — Opi i i

2. For the pixel (1,1): 2 = o

3. For pixels (4,7) where ¢ =1 and j # 1, N:
oc 0ci,j + dci j—1
Opi,j Opi,j Opi.j

4. For pixels (i,7) where i # 1, N and j = 1:
oC  __ 0cij dci—1,j
Opij ~ Opi,j i, j

Here we will explain why we use forward finite differences when the right and
bottom boundary conditions are imposed. Let us take a look at a pixel (i, )
on the left boundary of a patch This pixel doesn’t have a neighboring pixel
(i,j — 1) on the left. As a result, derivatives along the horizontal direction can’t
be calculated if backward finite differences are applied. However, forward finite
differences doesn’t pose such a problem in this case and therefore are employed.
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The calculation of 99, 9%-13 and 9¢9-1 ig straightforward. Only the cal-
apw ’ apz,] ’ apz,g
“i-1.J g presented for demonstration.

culation of ?

api,j
Wi
Cim1,j = ) " , Ll
\/1 +t D1 TG
+ Xil(Pij — Pie1,5) — (@ie1,541 — die1,5)]°
+ As1[(Pie1,j41 _pi—l,j)2 + (pij —pi—l,j)2
2 2
+ (Gi-1,+1 — Gi—1,5)" + (@ij — ¢i-1,5)°]
+ Asa[(uic i — wim15)? 4 (wiy — uis1)?]
(23)
ci1.4
61 7 =2Xi[(pij — pic1j) — (@151 — Gi-1)]
Di,j

+ 2X1[pij — pi-1,4] (24)
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Abstract. In tracking face and facial actions of unknown people, it is essential
to take into account two components of facial shape variations: shape variation
between people and variation caused by different facial actions such as facial
expressions. This paper presents a monocular method of tracking faces and fa-
cial actions using a multilinear face model that treats interpersonal and intraper-
sonal shape variations separately. We created this method using a multilinear face
model by integrating two different frameworks: particle filter-based tracking for
time-dependent facial action and pose estimation and incremental bundle adjust-
ment for person-dependent shape estimation. This unique combination together
with multilinear face models is the key to tracking faces and facial actions of arbi-
trary people in real time with no pre-learned individual face models. Experiments
using real video sequences demonstrate the effectiveness of our method.

1 Introduction

Real-time face and facial action tracking is a key component of applications in various
fields including human-computer interactions, video surveillance, and intelligent trans-
port systems. Techniques suited to such applications must be able to estimate 3D face
poses and facial actions correctly using a single camera even when large facial shape
deformations due to different facial expressions are present. To be used practically, the
techniques must be able to work with arbitrary people without preliminary preparations,
e.g., building a face model for each person. The aim of this study is to develop a novel
tracking technique that satisfies these two requirements. Therefore, we have developed
a person-independent monocular tracking technique for face and facial actions.

Many model-based methods have been proposed for face and facial action tracking
[1I2131413]]. Using a linear face model typically obtained by principal component analy-
sis (PCA), these methods estimate the pose and coefficients of deformation bases of a
face. However, most previous methods [T121415] used face models that were created for
each person before estimation. Requiring preparation of person-specific face models is
often too restrictive for practical applications. In order to use person-specific models
without preliminary model preparation, Oka et al. proposed a multi-view method for
simultaneously modeling faces and estimating motion [3]]. However, their method was
still too costly in terms of system installation, using multiple cameras that need to be
accurately calibrated beforehand.

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 58-{70,]2007.
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Meanwhile, another approach can be taken using a generic face model that repre-
sents facial shape deformation across multiple people with one parameter set [6/7].
Gross et al. presented an interesting empirical study on performance comparison be-
tween generic and person-specific models that were not 3D models but 2D active ap-
pearance models [6]. It was reported that the use of generic models often resulted in a
much worse rate of convergence in model parameter estimation. Especially in the case
of 3D models, generic models inescapably contain a deformation factor that normally
does not happen for a single person, such as scaling. These factors are hard to distin-
guish from the head pose, thus decreasing the tracking accuracy. Zhu et al. [7]] used
an AAM-based generic face model to estimate 3D head pose and facial actions in real
time. However, no quantitative evaluation was performed on their head pose estimation
result.

To cope with this problem, some methods used 3D face models with two separate
sets of parameters (a set of shape parameters for interpersonal deformation and a set
of action parameters for intrapersonal deformation). The use of such models limits
the required number of parameters for each set without degrading the expressiveness
of the model. In addition, these two sets of parameters with different behavior can be
treated separately. Dornaika et al. used a model with separate sets of parameters in
real-time face tracking [8]. Their method estimates time-dependent action parameters
sequentially. However, shape parameters for person-dependent facial shape variations
are set manually, and their method does not adjust shape parameters during the tracking
process. Vlasic et al. [9] used a multilinear face model that describes interpersonal and
intrapersonal deformations separately. However, the purpose of their method was to
capture facial expression from a video segment, so it is not clear how their method can
be extended to real-time estimation. DeCarlo et al. [10] used tracking residuals from
model-based optical flow to adjust all of the parameters, including shape parameters.
However, their method was computationally too costly to be executed in real time.

As stated above, there is no method which is capable of estimating both shape and ac-
tion parameters in real-time. In contrast, our method executes shape adjustment simul-
taneously with real-time non-rigid head pose tracking, by using a model-based bundle
adjustment with a multilinear face model.

As shown in Fig.[Il our method consists of two steps. The first step, called the Esti-
mation Step, estimates action parameters, i.e., intrapersonal deformation, as well as the
person’s 3D head pose for each input frame by using a particle filter. It also finds cor-
rect 2D positions of facial feature points in the image. This step enables a head pose and
facial action tracking that is robust to partial occlusion or depth-directional movement.

The second step, called the Modeling Step, incrementally refines shape parameters,
i.e., interpersonal deformation, by model-based bundle adjustment based on 2D facial
feature positions obtained from the Estimation Step. This step enables a stable adjust-
ment of shape parameters that includes factors indistinguishable from head pose. Up-
dated shape parameters are then used in the succeeding Estimation Step. In this way,
our method enables progressive refinement of the estimation accuracy and personal
customization of the face model.

This unique combination of particle filter-based tracking and incremental bundle
adjustment enables monocular estimation of non-rigid 3D facial motion without



60 Y. Sugano and Y. Sato

C Each input image )

Estimation Step I

Pose estimation step

{ ) Estimating 3D head pose and facial actions

s A J
Multilinear
face model Feature-point finding step

( Action parameter ) Finding true positions of 2D feature points

|
v .
Shape parameter /\New observation
Modeling Ste
N ngstep )+ CIDD

Past observations
Shape adjustment

Bundle adjustment of shape parameter

Fig. 1. System overview

preliminary learning of face models tailored for each person. As far as we know, this is
the first research to propose a method using this approach.

The rest of this paper is organized as follows. In Section 2] we begin by describing
how multi-linear facial models with separate parameter sets are constructed prior to
tracking. Then we describe the two steps in our method; the Modeling Step in Section 3
and the Estimation Step in Section 4. We present our experimental results in Section 3
Finally, we present concluding remarks in Section[6l

2 Preliminary Construction of Multilinear Face Models

In this section, we describe how a multilinear face model with shape and action para-
meters is prepared by using N-mode singular value decomposition (SVD) [9] prior to
tracking.

A person’s face is represented in terms of its shape and appearance. More specifi-
cally, the face’s shape is represented as a 3/ -dimensional shape vector M composed
of 3D coordinates of K feature point. These are defined in the local coordinate system
fixed to the person’s head. The appearance of the face is modeled as appearances of the
feature points, which are registered as image templates automatically at the beginning
of each tracking.

A multilinear face model that represents facial shapes is built from a data tensor .7
that varies with people’s identity and facial expressions (Fig.[3). The first mode (noted

! In this study, K is set to 10. Those feature points are the inner and outer corners of both eyes,
both corners of the mouth, both nostrils, and the inner corner of both brows (indicated with
plus signs in Fig. 2).
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Fig. 2. Example of facial deformation Fig. 3. Data tensor

as feature points in the figure) corresponds to each shape vector M, while the sec-
ond (shape) and the third (action) modes correspond to identity and facial expression,
respectively. The data is arranged so that shape vectors of the same person making dif-
ferent facial expressions are aligned in a slice along the second mode, and shape vectors
of different persons making the same expressions are aligned in a slice along the third
mode. Based on N-mode SVD, the data tensor .7 is expressed as a mode product of an
orthonormal matrix U; of the ith mode and a core tensor ¢

U

7 =6 Xfeature Ufeature *shape Ushape *action Uaction

U.

= M X shape Ushape *action Uaction’ (D

where the model tensor .# contains basis vectors of the 3 K -dimensional face vector
space. Moreover, an approximated representation of .7 is obtained with the truncated
basis of action and shape spaces:

T~ M Xghape Ushape Xaction Uaction- 2

Using this approximated model tensor, we can generate an arbitrary face vector M
using shape and action parameters defined as coefficient vectors of .Z.

To construct the data tensor .7, we first need to prepare shape vectors for different
persons moving their faces in different ways. In this study, we used a multiview-based
face and facial action tracking technique [3] to obtain shape vectors. While K facial
features were being automatically tracked, S people were asked to move their faces in 2
different ways: horizontally move the corners of their mouth, and vertically move their
mouths and eyebrows. Then, 5 intermediate facial shapes were chosen for each facial
action (from beginning to completion of the action) for a total of A = 10 shape vectors
for each person.

This gives us S x A samples of face shape. After calculating and subtracting mean
shape M, we construct a data tensor .7 € R35*5%4_ By calculating the model tensor
A with approximated shape (S — S’) and action (A — A’) spaces as Eq @), we
can describe an arbltrary face vector M using a shape parameter s € R?", an action
parameter a € R4" and the mean shape M:

M =M + 4 x

T T
eS Xaction @ - 3

shap
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Here, each row of Ushape = (31,..., éS)T and Uyion = (@1, - .-, dA)T in Eq.

@) is a parameter vector corresponding to each of the A x S data. We calculate the mean
vector § and the vector o5 composed of standard deviations of elements of {3, }, and the
mean vector @ and the vector o, composed of standard deviations of elements of {a;}.
These four vectors are later used to determine the constraint of a bundle adjustment
(Section[3), and the diffusion and weighting process of a particle filter (Section [)).

This model enables us to describe any facial state of any person with a person-
dependent shape vector s, a time-dependent action vector a and a head pose vector
p defined as a translation and a rotation from the world coordinate system to the model
coordinate system. In the following sections, we explain the details of our real-time face
and facial action tracking method using this face model.

3 Modeling Step: Estimation of Interpersonal Shape Variations

In this section, we describe the Modeling Step of our method of incrementally adjusting
shape parameter vector s, which represents interpersonal facial shape variation, using
model-based bundle adjustment.

Bundle adjustment is a maximum likelihood estimation method that optimizes pa-
rameters in 3D space by minimizing the 2D reprojection error in multiple images. In
the context of facial shape estimation, it is used to model rigid faces [11]], estimate
rigid head motions in real time [12], and adjust the shapes of deformable face models
acquired from a non-rigid factorization method [13].

In this research, we used model-based bundle adjustment to incrementally adjust the
shape parameter vector s of a multilinear face model. We introduce two modifications
to stabilize estimation of shape parameters. One is an incremental construction of an
adjustment frame set based on the result from the Estimation Step with a particle filter.
The other is the use of parameter constraints determined on the basis of the distribution
of the shape parameter and estimated pose and action parameters. We first explain how
to choose a set of observation frames and then explain model-based bundle adjustment
with parameter constraints.

3.1 Incremental Construction of the Bundle Adjustment Frame Set

Using the face model presented in Section[2] the bundle adjustment problem is formu-
lated as follows. First, we calculate the face shape vector M; from Eq. ). Then K
feature points in shape vector M, are projected onto the image plane as:

my :P(ptaMt(atus))a (4)

where P is a projection function given by camera parameters that are obtained prior
to tracking, and m; is a 2K -dimensional vector that consists of 2D coordinates of K
projected feature points.

Let m, be a vector that represents the true 2D coordinates of K feature points.
This 2K -dimensional vector 1 is obtained in the Estimation Step as explained later
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in Section [£.2] Finally, we can define an error function for the sum of the reprojection
errors over a set of observation frames as:

- ZD(mi7mi(pi7aiaS))27 (5)
i€ fi

where f; means a set of n observation frames used in the bundle adjustment at time ¢,
as illustrated in Fig. @

Se-1) St
selected
frame set fi_| past frames fnrgvr; ot
! i + estimated p';, a',

Fig. 4. Flow of incremental bundle adjustment

Our method generates the frames of this frame set f; one at a time, by replacing one
frame of the previous set f;_1 with a new frame. For the new frame ¢, pose p} and action
aj estimated in the Estimation Step are assigned as initial values for the minimization
of F;. Meanwhile, selected n — 1 frames are initialized from previous minimization
results of F;_; and adjusted on an ongoing basis.

Zhang et al. [14] used a similar approach of updating a set of observation frames by
replacing the oldest frame with a new incoming frame. However, it is often the case
in real-time tracking that object appearances do not change much between consecutive
frames, and, as a result, depth ambiguities cannot be resolved reliably with bundle ad-
justment. This problem is avoided in our method by maximizing the variation of poses
in the adjustment frame set. More specifically, we choose the frame set with the widest
pose variance at the initial state of the minimization, from among all n frame combina-
tions possible at the time. By repeating this selection scheme, the pose variation in the
frame set increases as the tracking proceeds.

3.2 Error Minimization with Parameter Constraints

Next, we describe in detail the minimization procedure of F; (Eq. (3)) with parameter
constraints, which is meant to stabilize the adjustment process. F} is minimized using a
Levenberg-Marquardt method under the parameter constraints [13]]:

min  Fy, p;€C,, a;€C,,, scC, (6)
{pi}7{ai})s

where C),,, C,, and C denotes the constraints on each parameter.
As mentioned above, initial pose p; and action parameter a; for the minimiza-
tion are estimated almost exactly, based on the value obtained in the Estimation Step.
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Accordingly, tight constraints C), and C|,; are imposed such that only small changes
are allowed in each iteration:

Cp. ={pi | Pi = Ap < pi < Di + Ap}, (N

where A, is a constant vector that denotes the adjustment range. The action constraint,
C,,, is set in the same way. Currently, A, and A, are determined empirically.

In contrast, a relatively weak constraint is imposed on shape parameter s based on
the vector of standard deviations o, from Section 2}

C;={s5]5-205<s<5+ 20} (8)

This allows shape parameters to be adjusted to the shape of the person’s face smoothly
while excessive shape deformations are prohibited.
Finally, the shape parameter s,y for the next Estimation Step is calculated as the
mean of the estimation results up to the present time:
t—1 1
Sty = su-1)+ 8, )
t t
where s’ denotes the result of estimation at time ¢, calculated from the process men-
tioned above. Eq. (@) reduces the influence of short-term fluctuation in the adjustment.

4 Estimation Step: Estimation of Head Pose and Facial Actions

In this section we describe the Estimation Step (Fig.[I). It is important to note that time-
varying action and pose parameters cannot be estimated properly with the model-based
bundle adjustment process of the Modeling Step for several reasons. First, the estimation
result tends to jitter, especially in the depth direction. Second, 2D positions of feature
points required for the bundle adjustment cannot be obtained stably with simple 2D
tracking or detection. Last, if some of the feature points are not observed, the pose
and action parameters cannot be estimated correctly. To solve these problems, we use a
particle filter to estimate pose and action parameters based on a 3D model-based motion
prediction.

As shown in Fig. [Tl the Estimation Step consists of two components: the Pose esti-
mation step, which estimates pose p; and action a;, and the Feature-point finding step,
which calculates the true 2D positions of feature points 772, which are used as the obser-
vation vector in Eq. () in the Modeling Step. In the following sections, we first explain
the Pose estimation step, and then explain the Feature-point finding step.

4.1 Head Pose Estimation Using Particle Filter

To estimate facial action, the multilinear model in Eq. (@) is rewritten as a linear defor-
mation model with the shape parameter s(;_) calculated in the previous frame:

My =M + Ma; (M =M Xgpape $(-1))- (10)
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Using this model, we estimate a (6 + A’) dimensional state vector &, = (p;F7 a;r)T

at frame ¢. The sample set {(ugi); TK’t(i))} for the particle filter in our method consists

of N discrete samples ugi) in the (6 + A’) dimensional state space and of associated
weights 7',
To generate N new samples at each time ¢, we define a uniform linear motion model

as follows:
u =l v tw, (11)

where u;_, is a chosen sample from the previous sample set, 7 is the interval between
frames, and v;_1 is the velocity of the state vector x calculated at the previous frame
t — 1. Note that the elements of v;_; corresponding to the action parameter a, are set
to 0, because a; does not always match the assumption of uniform linear motion.

w is a system noise that affects the diffusion property, and each element of w is a
Gaussian noise with a zero mean and a uniquely defined variance. The elements corre-
sponding to the head pose are adaptively controlled depending on velocity [3]. Mean-
while, the standard deviation of the Gaussian noise for the other elements corresponding
to the action parameter is set to ko, based on the parameter distribution calculated in
Section 2l Here, r is empirically set to 0.2.

Weight 7rt(i) of each sample ugi) is calculated as:

2

. 2
, K — N(u") 1A (a9 —a
thwp(_( o >>-exp(—22< )

b=1

where N (ugi)) is a sum of the normalized correlation score for all K feature points
based on template image 7', which has a value between —K and K. The first term of

Eq. (I2) is a Gaussian function evaluating \ (ugi) ), and the standard deviation o is set

to 1.0. The second term is an evaluation function for the action parameter a?), which
prevents excessive face deformation. Here, agg, ap and ¢, is the b-th element of agl) a
and o, respectively.

After the calculation, each weight Ft(l) is normalized so that the sum is equal to 1.
Eventually, the current state vector x; is computed as a weighted average of all samples.

Note that the initial state vector xg is calculated from the bundle adjustment. After
a person’s face and K feature points are automatically detected over n frames (using
OKAO Vision library developed by OMRON Corporation), all parameters are initial-
ized by minimizing Eq. (@). In this case, we use predefined values as the start point of

the iteration: a head pose facing the center of the camera and mean parameters a and S.

4.2 Finding True Feature Positions in Images

Next, we describe the Feature-point finding step in detail. The 2D positions m of the
estimated feature points can be calculated from the estimated state vector x; and the
projection function P (Eq.H). However, if the adjustment of the shape parameter is not
done properly, the estimated positions do not always correspond with the true positions
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m}; ~
estimated position m' ue position m

Fig. 5. Finding true feature points

(as shown in Fig.[3). In this step, we find the true 2D positions 77; around the estimated
positions m.

We define the following energy function E} similar to the one used in Gokturk et al.
[1], and calculate the difference drin = 1, — 77,1 by successively minimizing it.

E; = Z{pl\ft — L |+ 1 - f1|\2} + €|, — m)||%. (13)
ROI

The first term of Eq. (I3) denotes the difference between the appearances of regions of
interest (ROIs) around the feature points. I, e R¥ isan intensity vector corresponding
to MM, whose kth element is the intensity of the input image at the kth 2D position
of 1m,. We use both the difference from the previous image and the difference from
the first image, which [[I]] also uses. This avoids the problem of drift of the calculated
feature points. p is empirically set to 4, and the size of ROI is 16 x 16. In contrast, the
second term denotes the geometric difference between m; and ;. Using this term,
we find the true positions 77 in the neighboring region of estimated positions mj. € is
empirically set to 4000.

5 Experimental Results

We have conducted a number of experiments to evaluate the performance of our method.
First, we compared our method with the multiview-based tracking method [3]]. In ad-
dition, to evaluate the effect of the use of the multilinear model and the bundle adjust-
ment, we made another comparison with the particle filter-based estimation result using
a generic PCA model with one parameter set.

The face model was built from .S = 26 persons x A = 10 actions, and the resulting
model had S” = 15 shape parameters and A’ = 5 action parameters. The generic model
was also built from the same data set using PCA, and had 20 deformation parameters.
Note that the target person in the experiment was not included among the 26 persons.

Table 1. Comparison of estimation errors

[mm] x vy z  [deg.] roll pitch yaw
Particle filter-based estimation using the generic PCA model
Mean 6.14 4.71 51.32 Mean 0.34 6.54 3.34
Std. Dev. 4.88 4.09 38.29 std. Dev. 0.29 4.71 2.73
Our method using the multilinear model

Mean 3.26 4.37 20.18 Mean 0.41 3.12 2.33
Std. Dev. 2.62 2.83 11.18 Std. Dev. 0.27 2.49 1.98
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Fig. 6. Estimation results: , y, and z are the horizontal, vertical, and depth-directional translation,
and roll, pitch, and yaw are the rotation around the z, y, and x axes, respectively. The bottom
graph shows the facial shape estimation error in the model coordinate system.
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Fig.7. Result images: the right column shows actual estimation results of our method using the
multilinear model, and the center column shows results of the generic model-based method. The
left column shows these results rendered from a different viewpoint.

Our tracking system consisted of a Windows-based PC with Intel Core 2 Duo E6700.
We captured 60-second long (1800 frames) video sequences from two calibrated BW
cameras via IEEE-1394. The image resolution was 640 x 480, the size of image tem-
plates T" was set to 16 x 16. A set of 1000 samples was used for particle filtering. n = 7
frames were used for the bundle adjustment. The initialization step, with 10 iterations of
LM minimization, took approximately 90 [ms], and the overall tracking process, with 5
iterations per frame, took approximately 32 [ms/frame].

Table [I] shows the estimation error of our method and the generic model-based
method. x, y, and z are the horizontal, vertical, and depth-directional translation, and
roll, pitch, and yaw are the rotation around the z, y, and x axes, respectively. Addition-
ally, Fig.[6lshows the detailed estimation results and the facial shape estimation error in
the model coordinate system. The difference between two monocular estimation meth-
ods is evident here. In Fig.[7l the right and center columns show actual images of the
estimation results, and the left column shows these results rendered from a different
viewpoint. The whole sequences can be seen on our website ] These results demon-

2 http://www.hci.iis.u-tokyo.ac.jp/“sugano/research/3d-face-tracking/
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strate that our method is more accurate than the method using the generic PCA model,
and favorably compares with stereo estimation.

6 Conclusion

In this work, we presented a person-independent monocular method for real-time 3D
face and facial action tracking. The key idea of our method is a unique combination
of i) particle filter-based tracking for time-dependent pose and facial action estima-
tion and ii) incremental model-based bundle adjustment for person-dependent shape
estimation, together with multilinear face models. To our knowledge, this is the first
work to achieve fully automatic 3D tracking of face and facial actions without prelimi-
nary training of person-specific face models. Our experimental results demonstrate that
our method performs significantly better than monocular tracking with a generic face
model, confirming the effectiveness of our real-time tracking method based on a multi-
linear face models. In our future work, we are planning to use our tracking method for
real-time facial expression analysis.
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Abstract. Over the last two decades automatic facial expression recog-
nition has become an active research area. Facial expressions are an im-
portant channel of non-verbal communication, and can provide cues to
emotions and intentions. This paper introduces a novel method for facial
expression recognition, by assembling contour fragments as discrimina-
tory classifiers and boosting them to form a strong accurate classifier.
Detection is fast as features are evaluated using an efficient lookup to
a chamfer image, which weights the response of the feature. An Ensem-
ble classification technique is presented using a voting scheme based on
classifiers responses. The results of this research are a 6-class classifier (6
basic expressions of anger, joy, sadness, surprise, disgust and fear) which
demonstrate competitive results achieving rates as high as 96% for some
expressions. As classifiers are extremely fast to compute the approach
operates at well above frame rate. We also demonstrate how a dedicated
classifier can be consrtucted to give optimal automatic parameter se-
lection of the detector, allowing real time operation on unconstrained
video.

1 Introduction

Our objective is to detect facial expressions in static images. This is a difficult
task due to the natural variation in appearance between individuals such as
ethnicity, age, facial hair and occlusion ( glasses and makeup ) and the effects
of pose, lighting and other environmental factors. Our approach relies upon a
boosted discriminatory classifier based upon contour information. Contours are
largely invariant to lighting and, as will be shown, provide an efficient discrimi-
natory classifier using chamfer matching.

Given a cartoon or line drawing of a face, it is taken for granted that the
human brain can recognize the expression or emotional state of the character.
Sufficient information must therefore be present in this simplified representation
for a computer to recognize key features associated with expressions. Using only
contour information provides important advantages as it offers some invariance
to lighting and reduces the complexity of the problem. Our approach relies upon
finding edges/contours on the face that are consistent across individuals for spe-
cific expressions. From a large set of facial images, candidate edges are extracted

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 71 2007.
© Springer-Verlag Berlin Heidelberg 2007
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and a subset of consistent features selected using boosting. The final classifier is
then a set of weighted edge features which are matched to an image quickly using
chamfer-matching resulting in a binary classifier that detects specific emotions.

This paper is split into a number of sections, firstly a brief background of
research into automatic facial expression recognition is presented. Section 3 ex-
plains the methodology of this research. Section 4 evaluates different expression
classifiers and results. Real time implementation of this work is described in
section 5 where the work is adapted for robust, continuous use. Parameterisa-
tion is addressed through the use of a dedicated classifier for automatic selection.
Finally conclusions and future work are described in section 6.

2 Background

Automatic facial expression research has gained inertia over the last 20 years. Fur-
thermore, recent advances in the area of face recognition and tracking, coupled
with relatively inexpensive computational power has fueled recent endeavors.

Early work on Automatic Facial expression recognition by Ekman [§], intro-
duced the Facial Action Coding System (FACS). FACS provided a prototype of
the basic human expressions and allowed researchers to study facial expression
based on an anatomical analysis of facial movement. A movement of one or more
muscles in the face is called an action unit (AU) and all expressions can then be
described by a combination of one or more of 46 AU’s.

Feature extraction methods applied to facial expression recognition can be
categorized into two groups, deformation methods or motion extraction meth-
ods. Deformation methods applied to facial expression recognition include Gabor
wavelets [3] [6] [2I], neural networks (intensity profiles) [I] and Active Appear-
ance Models [I5]. Gabor wavelets have achieved very accurate results as they
are largely invariant to lighting changes and have been widely adopted in both
facial detection and recognition, but are computationally expensive to convolve
with an image. Motion extraction methods using optical flow [20] or difference
images [5] have also been applied to facial expression recognition. Essa and
Pentland [9] combined these approaches and demonstrated accurate recognition
using optic flow with deformable models. This work also introduced FACS+, an
extension of FACS into the temporal domain.

Expression recognition is closely related to face detection, and many ap-
proaches from detection (such as the Gabor methods previously mentioned) have
been applied to expression recognition. Since the popularization of boosting in
the vision community by Viola and Jones [I7], this type of machine learning has
received considerable attention. In Adaboost, a strong classifier is built as a sim-
ple linear combination of seemingly very weak classifiers. Viola and Jones built
a fast and reliable face detector using Adaboost from simple, weak classifiers
based upon ‘haar wavelet like’ block differences [I7]. It is arguably the current
state-of-the-art in face detection and has resulted in boosting being applied to
many computer vision problems with many variants to the learning algorithm
[13], [T9]. Wang et al [I8] extended this technique to facial expression recognition
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by building separate classifiers of ‘haar like’ features for each expression. Shan
and Gong [4] also applied boosting to facial expression recognition, but boosted
local binary patterns (LBP) using conditional mutual information based boost-
ing (CMIB). CMIB learns a sequence of weak classifiers that maximize their
mutual information.

Shotton and Blake [16] presented a categorical object detection scheme based
upon boosted local contour fragments. They demonstrate that the boundary con-
tour could be used efficiently for object detection. This paper shows how internal
contour features can be used for extremely fast discriminatory classification.

Training Learning

Images Chamfer
Images
0..N
Strong Classifier
Edge Maps D O
Boosting a 5
0..N

Classifier

Candidates

¥ /4
Classifier Bank

Fig. 1. System Overview

3 Methodology

3.1 Overview

In this section we introduce how the proposed approach works, illustrated in
figure[[l A training set of images is extracted from a FACS encoded database.
Images are annotated (eyes and tip of the nose) so that features can be trans-
formed to a reference co-ordinate system. Each image then undergoes edge de-
tection. From each edge image, small coherent edge fragments are extracted from
the area in and around the face. A classifier bank (figure [2]) is then assembled
from candidate edge fragments from all the training examples. A weak classi-
fier is formed by assembling an edge fragment combined with a chamfer score.
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Boosting is then used to choose an optimal subset of features from the classi-
fier bank to form a strong discriminatory classifier. The final boosted classifier
provides a binary decision for object recognition. To build an n-class discrimi-
natory classifier we use probability distributions built from classifier responses
to allow likelihoods ratios to be used to compare across different classifiers. Also
an investigation of fusion methodologies, a one against-many classifier and an
ensemble classifier [7] are presented.

3.2 Image Alignment

To overcome the problem of image registration, each facial image must be trans-
formed into the same co-ordinate frame. Our initial tests are performed using a
3 point basis. However we will then proceed to demonstrate that position and
scale of a face (obtained via detection) is sufficient for classification with a min-
imal loss of accuracy. Before training, the images are manually annotated to
identify the two eyes and the tip of the nose, to form a 3-point basis (points are
non-collinear). Only near frontal faces are considered in this work and therefore
a 3-point basis is sufficient to align examples.

3.3 Weak Classifiers

Expressions are based on the movement of the muscles, but visually we distin-
guish expressions by how these features of the face deform.

The contour fragments e € F, where E is the set of all edges, are considered
from the area around the face based on heuristics of the golden ratio of the face.
The distance between the eyes is approximately half the width of the face and
one third of the height. This identifies the region of interest (ROI) from which
contours will be considered. Following an edge detection, connected component
analysis is performed and from each resulting contour fragment, the contour is
sampled randomly to form short connected edge features. Figure 2] shows an
example of a classifier bank built from a training set of faces.

Fig. 2. Classifier Bank
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3.4 Chamfer Image

To measure support for any single edge feature over a training set we need some
way of measuring the edge strength along that feature in the image. This can
be computed efficiently using Chamfer matching. Chamfer matching was first
introduced by Barrow et al [2]. It is a registration technique whereby a drawing
consisting of a binary set of features (contour segments) is matched to an image.
Chamfer matching allows features to be considered as point sets and matching
is efficient as the image is transformed into a chamfer image (distance) only once
and the distance of any feature can then be calculated to the nearest edge as a
simple lookup to that chamfer image. The similarity between two shapes can be
measured using their chamfer distance.

All images in the training set undergo edge detection with the canny edge
detector to produce an edge map. Then a chamfer image is produced using a
distance transform DT. Each pixel value q, is proportional to the distance to its
nearest edge point in E:

DTg(q) = mineek |lg — ell, (1)

To perform chamfer matching, two sets of edges are compared. The contour
fragment (T) and image edge strength E, producing an average Chamfer score:

d) (@) meeeE 1( +2) —ell, 2)
tET

where N is the number of edge points in T. This gives the Chamfer score as
a mean distance between feature T and the edge map E. Chamfer images are
expensive to compute, however this needs only be computed once per image. The
function dg:’a]frz (z) is an efficient lookup to the chamfer image for all classifiers.
An example of a chamfer image is shown in figure 1.

3.5 Learning

Boosting is a machine learning algorithm for supervised learning. Boosting pro-
duces a very accurate (strong) classifier, by combining weak classifiers in lin-
ear combination. Adaboost (adaptive boosting) was introduced by Freund and
Schapire [I0] and has been successfully used in many problems such as face de-
tection [I7] and object detection [16]. Adaboost can be described as a greedy
feature selection process where a distribution of weights are maintained and
associated with training examples. At each iteration, a weak classifier which
minimizes the weighted error rate is selected, and the distribution is updated
to increase the weights of the misclassified samples and reduce the weights of
correctly classified examples. The Adaboost algorithm tries to separate training
examples by selecting the best weak feature hj(z) that distinguish between the
positive and negative training examples.

i (T,E) ]
hj(l‘) {1 f dcham( ) < 9] } (3)

0 otherwise
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0 is the weak classifier threshold. Since setting a fixed threshold requires a priori
knowledge of the feature space, an optimal 65 is found through an exhaustive
search for each weak classifier. An image can have up to 1,000 features, thus over
the training set, many thousands of features are evaluated during the learning
algorithm. This allows the learning algorithm to select a set of weak classifiers
with low thresholds that are extremely precise allowing little deviation, and weak
classifiers with high thresholds which allows consistent deformation of the facial
features. This increases the performance but as will be seen, does not result in
over fitting the data.

Joy Surprise Anger

WISIET OO0 L1 :SHES

Fig. 3. Strong Classifier Visualization

Positive training examples are taken from the target expression and negative
examples from other sets of expressions. Following boosting the final strong
classifier consists of edge features which can be visualized. Figure [ shows the
classifiers for joy, surprise and anger trained against neutral expressions, the
circles depict the position of the 3 point basis. Note that these visualizations
reflect what we assume about expressions, eg surprise involves the raising of
the eyebrows and anger 'the deformation’ around the nose. However perhaps
surprisingly, the mouth does not play an important role in the joy classifier, which
is both counter intuitive and contradictory to AU approaches. This is partly
due to higher variability away from the center of the 3 point basis, but more
importantly the variability across subjects. People smile with their mouth open
or closed, so boosting decides that the lines on the cheeks are more consistent
features than those of the mouth. What boosting is doing is deciding its own
optimal set of AU’s based upon the data.

Training expressions against only neutral images results in a classifier that
learns all the deformation for that expression. While this is beneficial for visual-
isation or single class detection it presents problems to multi class detection as
many positive expressions will be confused by the classifiers. Training against all
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Fig. 4. Roc curves for each expression trained one against many

other expressions forms classifiers that only learn the deformation that is unique
to that expression, which reduces the number of false positives. Figure @ shows
receiver operating characteristic (ROC) curves for each of the expression classi-
fiers. Expressions were boosted using all other expressions as negative examples
and over 1000 rounds of boosting.

3.6 N-Class Discriminatory Classifier

The following section is an investigation into different classifier approaches. In
this paper we investigated using the threshold response from the strong classifier,
likelihoods and ensemble methods for classification.

As our n-class classifier is to be built from binary classifiers some way of com-
bining classifiers responses is required in order to disambiguate between expres-
sions. The unthresholded classifier response cannot be used, as each classifier has
a different number of weak classifiers, different thresholds and therefor different
responses and ranges.

A more principled way to compare responses is to use likelihoods. Positive
and negative probability distribution functions (pdf’s) were constructed for each
classifier, using a validation set. Noise in terms of x,y translation was added to
the validation set in order to artificially increase the set. Positive and negative
responses from the validation set were then used to build histograms (figure[fand
figure[d]). Parzen windowing was used to populate these histograms. To calculate
the likelihoods a comparison is made between the response of the positive pdf’s
for each classifier.

The likelihood ratio was evaluated for each classifier by dividing the response
of the positive pdf by the response of the negative pdf for each classifier (equation
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Fig. 6. Negative Probability Distribution

[4]). Where LR is the likelihood ratio, L is the likelihood and the positive and
negative pdf’s are Pp and Pn respectively.

LR(z) = MAXy, {é((i]]jz ; } (4)

Dietterich [7] argues that ensembles methods can often perform better than a
single classifier. [7] proposes three reasons why classifier ensembles can be ben-
eficial (statistical, computational and representational). Statistical reasons are
based on the learning algorithm choosing a non-optimal hypothesis, given insuffi-
cient training data. By constructing an ensemble from accurate classifiers, the al-
gorithm can average the vote and reduce the risk of misclassification. For a n-class
classifier system, this can be broken into n(";l) binary classifiers respectively, al-
lowing each expression to be exclusively boosted against every other expression.
Using a binary threshold each classifier has a vote. Each n expression ensemble
classifier can receive (n-1) votes, and classification is done using a winner takes all
strategy.
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4 Expression Classification

The Cohn Kanade facial expression database [12] was used in the following
experiments. Subjects consisted of 100 university students ranging in age from
18 - 30. 65% were female, 15% were African American, and three percent were
Asian or Latino. The camera was located directly in front of the subject. The
expressions are captured as 640 x 480 eps images. In total 365 images were chosen
from the database. The only criteria was that the image represented one of the
prototypical expressions. This database is FACS encoded and provides ground
truth for experiments. Each image has a FACS code and from this code images
are grouped into different expression categories. This dataset and the selection
of data was used to provide a comparision between other similiar expression
classifiers [4] and [3].

Initial experiments were carried out by training each expression against 1) neu-
tral expressions only, 2) against all other expressions, selecting candidate features
from positives training examples only and 3) against all other expressions, select-
ing negative and positive features from all images in the training set. Training
expressions against only neutral images results in a classifier with the poorest per-
formance as there is little variance in the negative examples and many other ex-
pressions are misclassified by the detector. Training against all other expressions
improves performance as the classifier learns what deformation is unique to that
expression. The better classifier is one that selects negative features to reduce false
detections. This classifier outperforms the other two methods as each expression
has unique distinguishing features which act as negative features. To give a crude
baseline we normalize the classifier responses into the range 0-1 and the highest
response wins. As expected likelihoods is a better solution with marginal perfor-
mance gains. However the Likelihood ratio gives a significant boost . Using 5-fold
cross validation on the 6-basis expressions and 7-class (neutral class included) a
recognition rate of 67.69% and 57.46% is achieved.

Table 1. Recognition results 6 class

Method Joy Surprise Sad Fear Anger Disgust Overall
Classifier Response 78.67 81.43 55.72 38 T77.14 40  61.83
Likelihood 78.67 82.86 57.14 56 60 40 6245
Likelihood Ratio 90.67 91.43 51.43 36 88.57 48  67.69
Ensemble Classifier Response 96 95.72 82.86 72 91.43 72 85

The recognition results were poor when compared to the roc curves (figure M)
for the classifiers. This is because when confusion between classifiers occurs,
examples are misclassified. To overcome this confusion several more principled
approaches were evaluated. Table 1 and table 2 show results using likelihoods
and likelihood ratio’s. All results presented in table 1 and table 2 are obtained us-
ing 5-fold cross validation with training and test sets divided 80-20. As expected,
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likelihood ratios outperform likelihoods yielding a 5% increase in performance.
From the results it was apparent that the more subtle expressions (disgust, fear
and sad) are outperformed by expressions with a large amount of deformation
(Joy, surprise,anger). Subtle changes in appearance are difficult to distinguish
when using one reference co-ordinate frame due to the variability across subjects.

Table 2. Recognition results 7 class

Method Joy Surprise Sad Fear Anger Disgust Neutral Overall
Classifier Response 78.67 68.57 48.57 50 65.71 12 46 52.78
Likelihood 70.69 71.43 25.71 44 71.43 20 64  52.47
Likelihood Ratio 73.35 68.57 31.43 50 82.85 32 64  57.46
Ensemble Classifier Res 95.99 92.86 65.71 58 92.28 84 76 80.69

In this research we have a 6-class and 7-class classifier system, this can be
broken down into 15 and 21 binary classes respectively, allowing each expres-
sion to be exclusively boosted against every other expression. Using a binary
threshold ( chosen from the equal error rate on the ROC curve ) each classifier
has a vote. Each n expression ensemble classifier can receive (n-1) votes. When
confusion occurs, a table of likelihood responses is kept, the product of these is
compared for each class of confusion and the highest likelihood wins. Using the
binary voting scheme with the ensemble classifier gives an increase of up to 27%
in recognition performance.

Table Blcompares this work with other facial expression classifiers. For a direct
comparison we compare our results to other methods that use Adaboost and the
Cohn Kanade database. Bartlett et al [3] performed similar experiments on
the same dataset using Adaboost to learn Gabor wavelet features and achieved
85% accuracy. Further more Shan and Gong [4] learnt LBP through Adaboost
and achieved 84.6% accuracy. Table [Blsummarises that using contour fragments
as a discriminatory classifier is comparably to Gabor wavlet and LBP features.
It is important to note that while performance equals the state of the art, the
application of our classifier is extremely efficient. A worst case classifier of 1000
weak classifiers takes only 3ms to assess within a half pal image based upon our
implementation on a 3GHz P4 machine.

Table 3. Comparisons between other boosting based expression classifiers using Cohn
Kanade database

Methods Results
Local Binary Patterns with Adaboost [4] 84.6%
Gabor wavelets with AdaBoost [3] 85%

Edge/chamfer features with Adaboost 85%
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5 Real Time Implementation

For real time detection in video sequences this work has been implemented with
the Viola-Jones [I7] face detector from the openCV libraries [I1]. The initial ex-
periments above required annotating the 3 point basis. For this implementation
we use a 2 point basis from the bounding box returning by the face detector.
Figure [1 shows the comparison of the three point basis (two eyes and nose) and
the two point basis (points returning by face detector). Interestingly only a small
performance drop is seen going from a 3 point basis to 2.

ROC Curve

= i = oSim: i =5 = 3

% True positives
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Fig. 7. Comparison between 2 and 3 point basis

Detection is reliant upon a good edge detection and therefore Chamfer map,
however, edge information varies with lighting conditions, scale and subject. For
reliable recognition, a suitable edge threshold is required for the given subject.
An optimal threshold (OT) classifier was therefore constructed in a similar way
to the previous classifiers, this is then used to alter the edge threshold at run
time. This allows continuous parameter selection and thus our system is more
robust to subject change and lighting conditions. The OT classifier is build using
positives examples from different expressions with an optimal threshold selected
manually. The negative examples are the same expressions with extremely low
(high noise ratio) edge thresholds. This allows boosting to select features which
are consistent across all expressions at an optimal edge threshold and more im-
portantly negative features consistent across expressions at low edge thresholds.
Since the features of the face provide strong edge information across a range of
edge thresholds the OT classifier was predominantly constructed from negative
features which are consistent only at low edge thresholds. At runtime the re-
sponse of the OT classifier will peak at a suitable threshold which can then be
used with the other classifiers.
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6 Conclusions and Future Work

In this paper a novel automatic facial expression classifier is presented. Unlike
other popular methods using Gabor wavelets, we have developed a real time
system. For a 6 class (Joy, Surprise, Sadness, Fear, Anger and Disgust) system
a recognition rate of 85% is achieved. Recognition is done on a frame by frame
basis. As suggested in the literture [7], ensemble methods can often outperform
single classifiers. In our experiments, the ensemble classifier approach provided
an increase of up to 27% in recognition rates.

Bassili [T4] demonstrated how temporal information can improve recognition
rates in humans. Some faces are often falsely read as expressing a particular
emotion, even if their expression is neutral, because their proportions are natu-
rally similar to those that another face would temporarily assume when emoting.
Temporal information can overcome this problem by modeling the motion of the
facial features. Future work will incorporate temporal information into the cur-
rent approach.
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Abstract. Recently skeletal motion data is obtained from the motion
capture and is used for movie and sports. The movie production does not
need the skeletal motion data but the body surface data. It is difficult to
generate body surface data from only skeletal motion data because mus-
cle deforms according to the skeletal motion. Muscle deformation occurs
with arm and leg joint rotation. In this paper, we visualize body surface
deformation based on the deformation mechanism that is applicable to
human motion according to anatomy based modeling. We propose the
method generating body surface by covering the skeletal muscles using a
thin film based on the level set method. We demonstrate the effectiveness
of the system through the generation of the movement of a body builder
by using the proposed system.

1 Introduction

It is studied to measure and calculate the human motion in the several fields.
Recently, body surfaces|[I][2] and skeletal motions[3] have been measured using
cameras and range sensors. It is possible to scan not only the body surface but
also the inside of the body using MRI and CT in the medical field[]. A part
from this, a bipedal walking robot has been studied [5]. The composite method
of the human motion based on the physical model was studied[6].

The importance of anatomy based modeling has been discussed[7][8]. We can
find the muscles and they deform according to the finite element methods[9] [10].
However we cannot appear the model of muscle fibers in the paper. Face de-
formation based on the countenance muscle was studied to generate angry and
cheerful countenance[II]. The deformation mechanism of face muscle is basically
different from that of skeletal muscle[I2]. Although the visualization of the hu-
man body based on motion has been studied[I][2][13], the muscle deformation
was not simulated based on the muscle deformation mechanism according to
skeletal motion. We do not generate only muscles but also muscle fibers. In this
paper, we visualize the skeletal muscle based on its deformation according to
skeletal motion.

If the skeletal muscle contracts and decreases in length, it becomes thick. How-
ever the skeletal muscle stretches and its length increases, it becomes thin. These
situation occurs because muscle fibers move with the contractions and streching
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of the skeletal muscle. We visualize skeletal muscle deformation according to the
human motion based on the mechanism.

While the body surface is generated using the cylinder model[I4] in the case of
representing the human body related to the anatomy, it is difficult to generate
the human body using only cylinders. Though we follow the anatomy based
modeling, we do not generate the body surface by using the cylinder model but
covering the skeletal muscles using a thin film. We generate the three dimensional
image by mapping the points on the body surface in the three dimensional space
that an animal exists. Thus we propose the method generating the human body
by using the level set method[I5] from the obtained three dimensional image. In
this paper, we extend the region partition method based on level set method[I6]
applying for the two dimensional image to the method applying for the three
dimensional image. It is enable to to visualize the body surface deformation
using only skeletal motion data obtained from the motion capture.

The importance generating the several body types such as overweight and
underweight human by deforming a body surface obtained using range sensors
is discussed[T7]. We show that the trained muscle and the normal muscle can be
visualized by changing the skeletal muscle parameters according to the concept.

We discuss the skeleton and the skeletal muscle in section 2, and the muscle
fiber model in section 3, and the generation of the body surface in section 4. We
demonstrate the effectiveness of the method by visualizing muscle deformation
based on skeletal motion in section 5.

2 Skeleton and Muscle

2.1 Skeleton

The skeletons of a human were generated their based on images in medical
book[I8][19]. Bones are connected together through joints. The number of joints
in the human skeleton for the human model used in the experiment is 56, includ-
ing the 38 in the hands. Each joint has three degrees of freedom. The number
of human bones for the human model used in the experiment is 59 including 33
bones in the hands.

The neighbor skeletons share a parent child relationship and we define the
joint angle between them. The human motion is calculated from the joint angle
by using forward kinematics[20]. As the body motion can be calculated using
motion capture data, we can use the motion capture data to determine the body
motion.

2.2 Skeletal Muscle

The human body is composed of several tissues in skin, muscle, skeleton, vis-
cera, and neuron. These tissues are classified into epithelial, connective, muscle
and nervous tissue. Among these tussues, only the muscle tissue can contract
and stretch. The muscle tissue is classified into skeletal muscle, cardiac muscle,
and smooth muscle tissue. The skeletal muscle is used to cover and move the
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Fig. 1. The muscle fibers: (a) deltloid muscle, (b) spindle muscle, (¢) bicepts muscle,
and (d) triceps muscle

bones. The strength and velocity of muscle contraction and stretching can be
consciously controlled. The smooth muscle tissue is called viscera as it is used as
the wall of the viscera and it contracts and stretches unconsciously. The cardiac
muscle is in the heart and it contracts and stretchs unconsciously. As muscle
fibers are soft and fragile, they have strength by collecting many fibers. If skele-
tal muscle contracts and stretchs, the body moves. The number of the skeletal
muscle is about 400, and it occupies about 40% in the human body weight.

A skeletal muscle is the symmetrical shape for the rotation. A skeletal muscle
is composed of eight muscle fibers covering a skeletal muscle. Figures [[{a), (b),
(c), and (d) show deltoid, mitotic spindle, biceps and triceps muscles respectively.
The one side of the biceps muscle connects to bone and another side connects to
the two bones. The one side of the triceps muscle connects to bone and another
side connects to the three bones. In this paper, a muscle type is generated by
using some skeletal muscles of the spindle shape. The number of the human
skeletal muscle types is 34. The number of the human skeletal muscles is 178.
Their skeletal muscles are generated based on medical books[I8][I9]. Figures
B2l(a) and (b) show the skeletal muscle of the human body for the initial model as
viewed from the fromt and the rear, respectively. Figure 2(c) shows the skeletal
muscle of the human hand for the initial model. We use them as the initial model
of the human body.

3 Muscle Fiber Model

A skeletal muscle is located between two neighbor skeletons that connect at
a joint. The angle joint can be varied by contracting the skeletal muscle. If
the skeletal muscle decrease in length, the muscle fibers moves sideways, and
the skeletal muscle swells. If the skeletal muscle increases in length, the muscle
fibers move lengthwise and the skeletal muscle thins. Figure [B] shows the muscle
deformation. The biceps of the brachii muscle contracts and expands, as the
joint between an upper and a lower arm bends.

A joint between a bone and a skeletal muscle moves with the rotation of a
joint between neighboring bones rotates. As bones move, the connection between
a skeletal muscle and a bone also moves and there is a change in the thickness
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Fig. 2. (a) The skeletal muscle of the human body for the initial model as viewed from
the front. (b) The skeletal muscle of the human body for the initial model as viewed
from the rear. (¢)The skeletal muscle of the human hand for the initial model.

of the skeletal muscle. If the muscle length is |a| and the distance between the
muscle fiber and the center line of the skeletal muscle is r, then the cylinder
volume is V' = r? - 7 - |a|. On the other hand, if the muscle length |a| changes
to |b|, the volume changes to V' = 7/2 - 7 - |b|. The volume does not change

as the radius r changes to v’ = k- r - ||‘;||. That is, the radius of the muscle

isr' =k r- ||'Z|| after the joint between two bones rotates. If the radius is

k times the radius of the initial model, the volume changes to k - k times the
initial volume. We refer to parameter k as the thickness parameter of the skeletal
muscle. If £ = 0.9, the volume decreases to 0.81 times as big as the initial volume.

The movement of the muscle fiber is estimated on the basis of this model.
At first, we put the initial model of skeletal muscles and skeletons in the three
dimensional world coordinate space represented as (z,y, z). If the center axis
of the skeletal muscle in the initial model is (Za1, Ya1s 2a1), (Ta2, Ya2s Za2), then
the center axis of the skeletal muscle after the joint between two bones ro-
tates is defined as (xp1,yp1, 261), (To2,Yp2,2p2) and the center of the rotation
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Fig. 3. The position of the muscle fiber is calculated from the initial model. The left
figure shows the initial model. The right figure shows the muscle at the current time.

is (Ta1, Ya1s 2a1)s (Ta2,Ya2, Za2). The start point (xp1, Yp1, 2p1) and the end point
(b2, Yb2, 262) after the joint between the bones rotates can be calculated, because
the start and end point have the information of the connecting bones.

The muscle fiber position (2",y",2"") can be calculated using the muscle
fiber position (x,y, z) in the initial model, the center axis of the skeletal muscle
(zp1,Yb1, 201)s (To2, Yb2, 2p2) after the rotation of the joint and the center axis
of the skeletal muscle (zq1,Ya1,2a1); (Ta2, Ya2, 2a2) in the initial model. If a =
(a2, Ya2+ Za2) = (Ta1,Yal, Za1), b= (Tv2, Y2, 262) — (To1, Yb1s 261)5

Za2—Tal
la|

0
el | = Rx(a)Ry(B) (13 : (1)

|la
Za2 " Zal
la|
As the variables except the rotation angles o and 3 are known, the rotation
angles « and 3 can be gotten by solving the equation. The matrix R, («) shows
the rotation matrix that rotates o degree around x axis, and the matrix Ry(«)
shows the rotation matrix that rotates 8 degree around y axis.

LTp2 —Tb1
b

0
2l | = Ral(a)Ry(8') | 0 (2)
1

Zb2 —Zbl

As the variables except the rotation angles o/ and (3 are known, the rotation
angles o’ and 3’ can be gotten by solving the equation.

The muscle fiber position (z,y, z) of the initial model moves to the position
(2',y',2’) on the z axis.

X T — Tal
y/ = Ry(_ﬁ)Rx(_a) Y — Yal (3)

4 Z — Zal
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If 6 = tan_lgi, r = /2’2 + 92, the muscle fiber position (z’,/,2') that the
center of the skeletal muscle is on the z axis moves to the position (3", 2")
by constructing the muscle fiber.

" k-r- \/Ilzll cosl
yi: =\|k-r- ||‘;|| sind (4)
bl

la|

The muscle fiber position (z”,y”, z’") that the center of the skeletal muscle is on
the z axis moves to the position (z'”, 4", 2"”") by the translational motion in the
following equation.

" 1"
Th1

x
y" | = Rx(a )Ry (8) | y" | + | yn1 (5)
z Zb1

The muscle fiber position (", y", 2""") at this point of time is calculated using
the muscle fiber position (z,y,2) of the initial model. Thus we can calculated
the muscle deformation from the initial model of the skeletal muscles, the initial
model of the skeletons and the body motion data.

4 Generating Body Surface That Covers the Skeletal
Muscle

We generate a body surface that covers the skeletal muscle. We mapped the
three dimensional image from the space where the animal exists. In this study,
the body surface is composed of many triangles. We can increase the surface
points on the surface in the three dimensional image by dividing a triangle into
a number of smaller triangles. The body surface is thus generated from the three
dimensional image.

Recently, an image processing method based on a moving curved surface was
proposed using a partial differential equation[I6]. As the level of the function
¢ = 0, based on a geometric measure is defined using the partial differential
equation, this method is referred to as the level set method. An active contour
model was proposed to detect from the image with noise. In this study, we employ
the active contour model based on the method of the defining the level of the
function ¢ = 0, which in turn is based on a geometric measure. The original
image is ug, and the phase ¢ is the function required to detect the region. This
enables us to define an arbitarily initial value. The contour is ¢ = 0 in the phase
¢. The function u is the 