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Preface

The 2007 IEEE International Workshop on Analysis and Modeling of Faces and
Gestures (AMFG) is the third workshop of its type organized in conjunction with
ICCV, this time in Rio de Janeiro, Brazil. Our primary goal is to bring together
researchers and research groups to review the status of recognition, analysis and
modeling of face, gesture, activity, and behavior; to discuss the challenges that
we are facing; and to explore future directions.

This year we received 55 submissions. Each paper was reviewed by three
program committee members. The whole reviewing process was double blind.
However, due to size limit, we were only able to accommodate 22 papers, among
which 8 are orals and 14 are posters. The topics covered by these accepted
papers include feature representation, 3D face, robust recognition under pose
and illumination variations, video-based face recognition, learning, facial motion
analysis, body pose estimation, and sign recognition.

A special word of thanks goes to Dr. Feng Zhao, our organizing chair, for his
dedication and great efforts in maintaining both the online submission system
and workshop website and in handling most of the author contacts. We are
indebted to the advisory committee members for their valuable suggestions and
to the program committee members for their hard work and timely reviews.
Finally, we thank Cognitec System GmbH and Siemens Corporate Research for
their sponsorship.

October 2007 S. Kevin Zhou
Wen-Yi Zhao
Xiaoou Tang

Shaogang Gong
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Learning Personal Specific Facial Dynamics for Face
Recognition from Videos

Abdenour Hadid1, Matti Pietikäinen1, and Stan Z. Li2

1 Machine Vision Group, P.O. Box 4500, FI-90014, University of Oulu, Finland
http://www.ee.oulu.fi/mvg

2 Institute of Automation, Chinese Academy of Sciences, 95 Zhongguancun Donglu
Beijing 100080, China

Abstract. In this paper, we present an effective approach for spatiotemporal face
recognition from videos using an Extended set of Volume LBP (Local Binary Pat-
tern features) and a boosting scheme. Among the key properties of our approach
are: (1) the use of local Extended Volume LBP based spatiotemporal description
instead of the holistic representations commonly used in previous works; (2) the
selection of only personal specific facial dynamics while discarding the intra-
personal temporal information; and (3) the incorporation of the contribution of
each local spatiotemporal information. To the best of our knowledge, this is the
first work addressing the issue of learning the personal specific facial dynamics
for face recognition.

We experimented with three different publicly available video face databases
(MoBo, CRIM and Honda/UCSD) and considered five benchmark methods
(PCA, LDA, LBP, HMMs and ARMA) for comparison. Our extensive experi-
mental analysis clearly assessed the excellent performance of the proposed ap-
proach, significantly outperforming the comparative methods and thus advancing
the state-of-the-art.

Keywords: Facial Dynamics, Local Binary Patterns, Face Recognition, Boosting.

1 Introduction

Psychological and neural studies [1] indicate that both fixed facial features and dy-
namic personal characteristics are useful for recognizing faces. However, despite the
usefulness of facial dynamics, most automatic recognition systems use only the static
information as it is unclear how the dynamic cue can be integrated and exploited. Thus,
most research has limited the scope of the problem by applying methods developed for
still images to some selected frames [2]. Only recently have researchers started to truly
address the problem of face recognition from video sequences [3,4,5,6,7,8,9].

In [3], an approach exploiting spatiotemporal information is presented. It is based
on modeling face dynamics using identity surfaces. Face recognition is performed by
matching the face trajectory that is constructed from the discriminating features and
pose information of the face with a set of model trajectories constructed on identity
surfaces. Experimental results using 12 training sequences and the testing sequences of
three subjects were reported with a recognition rate of 93.9%.

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In [4], Li and Chellappa used the trajectories of tracked features to identify persons in
video sequences. The features are extracted using Gabor attributes on a regular 2D grid.
Using a small database of 19 individuals, the authors reported performance enhance-
ment over the frame to frame matching scheme. In another work, Zhou and Chellappa
proposed a generic framework to track and recognize faces simultaneously by adding an
identification variable to the state vector in the sequential important sampling method [5].

An alternative to model the temporal structures is the use of the condensation al-
gorithm. This algorithm has been successfully applied for tracking and recognizing
multiple spatiotemporal features. Recently, it was extended to video based face recogni-
tion problems [6,5]. More recently, the Auto-Regressive and Moving Average (ARMA)
model [10] was adopted to model a moving face as a linear dynamical system and per-
form recognition [7].

Perhaps, the most popular approach to model temporal and spatial information is
based on the Hidden Markov models (HMM) which have also been applied to face
recognition from videos [8]. The idea is simple: in the training phase, an HMM is
created to learn both the statistics and temporal dynamics of each individual. During
the recognition process, the temporal characteristics of the face sequence are analyzed
over time by the HMM corresponding to each subject. The likelihood scores provided
by the HMMs are compared. The highest score provides the identity of a face in the
video sequence.

Unfortunately, most of the methods described above use spatiotemporal representa-
tions that suffer from at least one of the following drawbacks: (1) the local information
which is shown to be important to facial image analysis [11] is not well exploited with
holistic methods such as HMMs; (2) while only personal specific facial dynamics are
useful for discriminating between different persons, the intra-personal temporal infor-
mation which is related to facial expression and emotions is also encoded and used;
and (3) equal weights are given to the spatiotemporal features despite the fact that some
of the features contribute to recognition more than others. To overcome these limita-
tions, we propose an effective approach for face recognition from videos that uses local
spatiotemporal features and selects only the useful facial dynamics needed for recog-
nition. The idea consists of looking at a face sequence as a selected set of volumes (or
rectangular prisms) from which we extract local histograms of Extended Volume Local
Binary Pattern (EVLBP) code occurrences. Our choice of adopting LBP (Local Binary
Patterns) for spatiotemporal representation is motivated by the recent results of LBP ap-
proach [12] in facial image analysis [13] and also in dynamic texture recognition [14].

In this paper, noticing the limitations of volume LBP operator in handling the tem-
poral information, we first extend the operator and derive a rich set of volume LBP
features denoted EVLBP. Then, instead of ignoring the weight of each feature or sim-
ply concatenating the local EVLBP histograms computed at predefined locations, we
propose an effective approach for automatically determining the optimal size and lo-
cations of the local rectangular prisms (volumes) from which EVLBP features should
be computed. More importantly, we select only the most discriminative spatiotemporal
EVLBP features for face recognition while discard the features which may hinder the
recognition process. For this purpose, we use AdaBoost learning technique [15] which
has shown its efficiency in feature selection task. The goal is to classify the EVLBP
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based spatiotemporal features into intra and extra classes, and then use only the extra-
class information for recognition. To the best of our knowledge, this is the first work
addressing the issue of learning personal specific facial dynamics for face recognition.

2 Extended Volume LBP Features (EVLBP)

The LBP texture analysis operator, introduced by Ojala et al. [16,12], is defined as a
gray-scale invariant texture measure, derived from a general definition of texture in a
local neighborhood. It is a powerful means of texture description and among its prop-
erties in real-world applications are its discriminative power, computational simplicity
and tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixels by thresholding the
3 × 3 neighborhood of each pixel with the center value and considering the result as a
binary number. Fig. 1 shows an example of an LBP calculation. The histogram of these
28 = 256 different labels can then be used as a texture descriptor. Each bin (LBP code)
can be regarded as a micro-texton. Local primitives which are codified by these bins
include different types of curved edges, spots, flat areas etc.

The calculation of the LBP codes can be easily done in a single scan through the
image. The value of the LBP code of a pixel (xc, yc) is given by:

LBPP,R =
P−1∑

p=0

s(gp − gc)2P (1)

where gc corresponds to the gray value of the center pixel (xc, yc), gp refers to gray
values of P equally spaced pixels on a cicrle of radius R, and s defines a thresholding
function as follows:

s(x) =
{

1, if x ≥ 0;
0, otherwise.

(2)

The occurrences of the LBP codes in the image are collected into a histogram. The clas-
sification is then performed by computing histogram similarities. For an efficient rep-
resentation, facial images are first divided into several local regions from which LBP
histograms are extracted and concatenated into an enhanced feature histogram. In such
a description, the face is represented in three different levels of locality: the LBP la-
bels for the histogram contain information about the patterns on a pixel-level, the labels

Fig. 1. Example of an LBP calculation
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Fig. 2. (a): A face sequence is seen as a rectangular prism and (b): An example of 3D neighbor-
hood of a pixel in Volume LBP

are summed over a small region to produce information on a regional level and the re-
gional histograms are concatenated to build a global description of the face. This locality
property, in addition to the computational simplicity and tolerance against illumination
changes, are behind the success of LBP approach for facial image analysis [13].

The original LBP operator (and also its later extension to use neighborhoods of dif-
ferent sizes [12]) was defined to deal only with the spatial information. For spatiotem-
poral representation, Volume LBP operator (VLBP) has been recently introduced in
[14]. The idea behind VLBP is very simple. It consists of looking at a face sequence
as rectangular prism (or volume) and defining the neighborhood of each pixel in three
dimensional space. Fig. 2 explains the principle of rectangular prism and shows an ex-
ample of 3D neighborhood for Volume LBP.

There are several ways of defining the neighboring pixels in VLBP. In [14], P equally
spaced pixels on a circle of radius R in the frame t, and P + 1 pixels in the previous
and posterior neighboring frames with time interval L were used. This yielded in VLBP
operator denoted VLBPL,P,R. Fig. 3 (top) illustrates an example of VLBP operator with
P=4 and R=1.

We noticed in our experiments on face recognition from videos that VLBPL,P,R does
not encode well enough the temporal information in the face sequences since the oper-
ator considers neighboring points only from three frames and therefore the information
in the frames with time variance less than L are missed out. In addition, a fixed number
of neighboring points (i.e. P ) are taken from each of the three frames, yielding in a less
flexible operator with large set of neighboring points. To overcome these limitations, we
introduce here an extended set of VLBP patterns by considering P points in frame t,
Q points in the frames t±L and S points in the frames t±2L. This yields in Extended
Volume LBP (EVLBP) operator that we denote by EVLBPL,(P,Q,S),R.

By setting {
Q = P + 1

S = 0 (3)

EVLBPL,(P,Q,S),R will be equivalent to VLBPL,P,R. Therefore, VLBPL,P,R can be
seen as a special case of EVLBPL,(P,Q,S),R. Fig. 3 (bottom) illustrates an example
of Extended Volume LBP operator with P=4, Q=S=1 and R=1 (EVLBPL,(4,1,1),1),
while Fig. 3 (top) illustrates an example of VLBPL,4,1 operator which is equivalent to
EVLBPL,(4,5,0),1.
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Fig. 3. Top: V LBPL,4,1. Bottom: EV LBPL,(4,1,1),1

Once the neighborhood function is defined, we divide each face sequence into sev-
eral overlapping rectangular prisms of different sizes, from which we extract local his-
tograms of EVLBP code occurrences. Then, instead of simply concatenating the local
histograms into a single histogram, we use AdaBoost learning algorithm for automat-
ically determining the optimal size and locations of the local rectangular prisms, and
more importantly for selecting the most discriminative EVLBP patterns for face recog-
nition while discarding the features which may hinder the recognition process.

3 Learning EVLBP Features for Face Recognition

To tackle the problem of selecting only the spatiotemporal information which is use-
ful for recognition while discarding the information related to facial expressions and
emotions, we adopt AdaBoost learning technique [15] which has shown its efficiency
in feature selection tasks. The idea is to separate the facial information into intra and
extra classes, and then use only the extra-class EVLBP features for recognition.

First, we segment the training face sequences into several overlapping shots of F
frames each in order to increase the number of training data. Then, we consider all
combinations of face sequence pairs for the intra and extra classes. From each pair
(sequence1

i , sequence2
i ), we scan both face sequences with rectangular prisms of dif-

ferent sizes. At each stage, we extract the EVLBP histograms from the local rectangular
prisms and compute the χ2 (Chi-square) distances between the two local histograms.
χ2 dissimilarity metric for comparing a target histogram ξ to a model histogram ψ is
defined by:

χ2(ξ, ψ) =
l−1∑

j=0

(ξj − ψj)2

ξj + ψj
, (4)

where l is the length of feature vector used to represent the local rectangular prisms.
Thus, for each pair of face sequences, we obtain a feature vector Xi whose elements

are χ2 distances. Let us denote Yi ∈ {+1, −1} the class label of Xi where Yi = +1
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if the pair (sequence1
i , sequence2

i ) defines an extra-class pair (i.e. the two sequences
are from different persons) and Yi = −1 otherwise. This results in a set of training
samples {(X1, Y1), (X2, Y2), ..., (XN , YN )}. Algorithm 1 summarizes our procedure
of constructing the training data.

Inputs: Given a set of face sequences {Sequence}
forall combinations of pairs (Sequence1

i , Sequence2
i ) do

Set Yi = +1 for extra-class pairs;
Set Yi = −1 for intra-class pairs;
forall locations and sizes of local prisms do

– Extract local EVLBPL,(P,Q,S),R

histograms with different parameters;
– Compute χ2 distances between

corresponding local histograms in the
given pair of sequences;

– Collect the χ2 distances in a feature
vector X

end
end
Outputs: {(X1, Y1), (X2, Y2), ..., (XN , YN )} ;

Algorithm 1. The construction of the training samples for feature selection using AdaBoost

Given the constructed training sets, we then apply the basic AdaBoost learning al-
gorithm [15] in order to (i) select a subset of rectangular prisms from which EVLBP
features should be computed, and (ii) learn and determine the weights of these selected
features.

Once the rectangle prisms are selected and their weights are determined, we per-
form the recognition of a given probe video sequence by extracting local histograms of
EVLBP patterns from the selected prisms and then applying nearest neighbor classifi-
cation using weighted χ2 distance:

χ2
α(ξ, ψ) =

T−1∑

t=0

lt−1∑

i=0

αt
(ξi,t − ψi,t)2

ξi,t + ψi,t
(5)

where T is the number of selected local prisms; αt are the weighting coefficients re-
sulted from AdaBoost learning, and lt the lengths of the feature vectors used to represent
local rectangular prisms.

4 Experimental Analysis

4.1 Benchmark Methods

For comparison, we implemented five different algorithms including Hidden Markov
models (HMMs) [8] and Auto-Regressive and Moving Average (ARMA) models [7] as
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benchmark methods for spatiotemporal representations, and PCA, LDA and LBP [13]
for still image based ones. In the following, we briefly describe the implementation of
these benchmark methods.

a) HMMs
The principle of using HMMs to model the facial dynamics and perform video-based
face recognition is quite simple [8,17]. Let the face database consist of video sequences
of P persons. We construct a continuous hidden Markov model for each subject in the
database. A continuous HMM, with N states {S1, S1, , ..., SN}, is defined by a triplet
λ = (A, B, π), where A = {aij} is the transition matrix, B = {bi(O)} are the state
conditional probability density functions (pdf) and π = {πi} are the initial distributions.
The model λ is built using a sequence of feature vectors, called observation sequence
O = {o1, o2, ..., ol}, extracted from the frames of the video sequence (l is the number
of frames). Different features can be extracted and used as observation vectors (e.g.
pixel values, DCT coefficients etc.). In [8], the PCA projections of the face images
were considered. Here in our experiments, we implemented a similar approach using
30 eigenvectors for dimensionality reduction and 16-state fully connected HMM.

During our training, using the Baum-Welch procedure [17], a model λp , (p =
1, 2, ..., P ), is built for all the subjects in the gallery. During the testing, given the
gallery models {λ1, λ2, ..., λP } and the sequence of the PCA feature vectors O =
{o1, o2, ..., ol}, the identity of the test face sequence is given by:

argmax
p

P (O|λp) (6)

In other terms, the likelihood scores P (O|λp) provided by the HMMs are compared,
and the highest score defines the identity of the test video sequence.

b) ARMA
In the ARMA framework, a moving face is represented by a linear dynamical system
and described by Eqs. 7 & 8:

x(t + 1) = Ax(t) + v(t) v(t) ∼ N(0, R) (7)

I(t) = Cx(t) + w(t) w(t) ∼ N(0, Q) (8)

where, I(t) is the appearance of the face at the time instant t, x(t) is a state vector that
characterizes the face dynamics, A and C are matrices representing the state and output
transitions, v(t) and w(t) are IID sequences driven from some unknown distributions.

We build an ARMA model for each face video sequence. To describe each model,
we need to estimate the parameters A, C, Q and R. Using the tools from the system
identification literature, the estimation of the ARMA model parameters is closed-form
and therefore easy to implement [10,7]. While the state transition A and the output
transition C are intrinsic characteristics of the model, Q and R are not significant for the
purpose of recognition [10]. Therefore, we need only the matrices A and C to describe
a face video sequence. Once the models are estimated, recognition can be performed by
computing distances between ARMA models corresponding to probe and gallery face
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sequences. The gallery model which is closest to the probe model is assigned as the
identity of the probe (nearest neighbor criteria).

Several distance metrics have been proposed to estimate the distance between two
ARMA models [18]. Since it has been shown that the different metrics do not alter
the results significantly, we adopted in our experiments the Frobenius distance (d2

F ),
defined by :

d2
F = 2

n∑

i=1

sin2θi(λj , λk) (9)

where, θi are the subspace angles between the ARMA models λj and λk , defined in
[18].

c) PCA, LDA and LBP
For comparison, we also considered still image based methods such as PCA, LDA and
LBP. However, in video-based face recognition schemes both training and test data (gal-
leries and probes) are video sequences. Therefore, performing still-to-still face recog-
nition when the data consists of video sequences is an ill-posed problem (i.e. which
frame from the test sequence to compare to which frame in the reference sequence?).
Here, we adopt a scheme proposed in [19] to perform static image based face recog-
nition that exploits the abundance of face views in the videos. The approach consists
of performing unsupervised learning to extract a set of K most representative samples
(or exemplars) from the raw gallery videos (K=3 in our experiments). Once these exem-
plars are extracted, we build a view-based system and use a probabilistic voting strategy
to recognize the individuals in the probe video sequences.

4.2 Experimental Data

For experimental analysis, we considered three different publicly available video face
databases (MoBo [20], Honda/UCSD [9] and CRIM [21]) in order to ensure an exten-
sive evaluation of our proposed approach and the benchmark methods against changes
caused by different factors including face image resolution, illumination variations,
head movements, facial expressions and the size of the database.

The first database, MoBo (Motion of Body), is the most commonly used in video-
based face recognition research [5,22,8], although it was originally collected for the
purpose of human identification from distance. The considered subset from MoBo data-
base contains 96 face sequences of 24 different subjects walking on a treadmill. Some
example images are shown in Fig. 4. Each sequence consists of 300 frames. From each

Fig. 4. Examples of cropped facial images from MoBo video database
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Fig. 5. Examples of facial images from CRIM video database

video sequence, we automatically detected and rescaled the faces, obtaining images of
40×40 pixels.

The second database, Honda/UCSD, has been collected and used by Lee et al. in
their work on video-based face recognition [9]. It was also used in the recent study of
Aggarwal et al. [7]. The considered subset from Honda/UCSD database contains 40
video sequences of 20 different individuals (2 videos per person). During the data col-
lection, the individuals were asked to move their face in different combinations (speed,
rotation and expression). From the video sequences, we cropped the face images in the
same way as we did for the MoBo database. The size of the resulted facial images is
20×20 pixels.

In order to experiment with a large amount of facial dynamics, resulted for example
from the movements of the facial features when the individuals are talking, we con-
sidered a third video database called CRIM. This is large set of 591 face sequences
showing 20 persons reading broadcast news for a total of about 5 hours. The database
is originally collected for audio-visual recognition. There are between 23 and 47 video
sequences for each individual. Some cropped images are shown in Fig. 5. The size of
the extracted face images is 130×150 pixels.

4.3 Experimental Results and Analysis

From each of the three video databases (MoBo, USCD/HONDA and CRIM), we ran-
domly selected half of the face sequences of each subject for training while the other
half was used for testing. In addition, given the limited number of training samples in
MoBo and Honda/UCSD databases, we also segmented the face sequences into sev-
eral overlapping shots in order to increase the number of training samples. In all our
experiments, we considered the average recognition rates of 100 random permutations.

First, we applied PCA, LDA, LBP, HMMs and ARMA to the test sequences in the
three databases. The performances of these methods are shown in Tables 1-3. From
the results on MoBo database (Table 1), we notice that all the methods perform quite
well and the spatiotemporal based methods (i.e. HMMs and ARMA) are slightly better
that the static image based methods (PCA, LBP and LDA). The better performance of
the spatiotemporal methods is in agreement with the neuropsychological evidence [1]
stating that facial dynamics are useful for recognition. From these results we can also
see that the benefit of the spatiotemporal approach is not very significant. Perhaps, in
MoBo database, this is due to the few amount of facial dynamics which are mainly
limited to rigid head movements.

However, the results on Honda/UCSD database (Table 2) show that the low-image
resolution (20 × 20 pixels) affects all these five methods and that image based ones
are more affected. This is also in agreement with the neuropsychological findings that
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Table 1. Comparative recognition results of 5 benchmark methods on MoBo database

Method Recognition rate

PCA 87.1%
LDA 90.8%
LBP [13] 91.3%
HMM [8] 92.3%
ARMA [7] 93.4%

Table 2. Comparative recognition results of 5 benchmark methods on Honda/UCSD database

Method Recognition rate

PCA 69.6%
LDA 74.5%
LBP [13] 79.6%
HMM [8] 84.2%
ARMA [7] 84.9%

Table 3. Comparative recognition results of 5 benchmark methods on CRIM database

Method Recognition rate

PCA 89.7%
LDA 91.5%
LBP [13] 93.0%
HMM [8] 85.4%
ARMA [7] 80.0%

indicate that facial movement contributes more to the recognition under degraded view-
ing conditions.

Surprisingly, the results on CRIM database (Table 3) show that HMM and ARMA
approaches gave worse results than PCA, LDA, and LBP based methods. While one
may not expect worse performances using spatiotemporal representations, the obtained
results attest that PCA, LDA and LBP based representations might perform better. This
means that combining face structure and its dynamics in an ad hoc manner does not
systematically enhance the recognition performance.

From the experiments, we also noticed that the basic LBP approach [13] performed
quite well and outperformed PCA and LDA in all our tests. This confirms the validity of
LBP based descriptions in face analysis. A bibliography of LBP-related research can be
found at http : //www.ee.oulu.fi/research/imag/texture/lbp/bibliography/.

We also experimented with Volume LBP spatiotemporal approach which has been
successfully applied to dynamic texture analysis in [14]. We divided each face sequence
into several overlapping local rectangular prisms of fixed sizes. Then, we extracted
the VLBP based spatiotemporal representation using different VLBP operator para-
meters. For recognition, we adopted the χ2 distance. Using such an approach, we ob-
tained best recognition rates of 90.3%, 78.3% and 88.7% with VLBP2,4,1, VLBP1,4,1
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and VLBP1,4,1 on MoBo, Honda/UCSD and CRIM databases, respectively. Surpris-
ingly, these results are worse than those obtained using still image LBP based approach
which yielded in recognition rates of 91.3% (versus 90.3%), 79.6% (versus 78.3%)
and 93.0% (versus 88.7%) on MoBo, Honda/UCSD and CRIM databases, respectively.
This supports our earlier conclusion indicating that using spatiotemporal representa-
tions do not systematically enhance the recognition performances. The most significant
performance degradations of VLBP approach are noticed on CRIM database which
contains the largest amount of facial dynamics. This indicates that some of these facial
dynamics are not useful for recognition. In other terms, this means that some part of the
temporal information is useful for recognition while another part may also hinder the
recognition. Obviously, the useful part is that defining the extra-personal characteristics
while the non-useful part concerns the intra-class information such as facial expres-
sions and emotions. For recognition, one should then select only the extra-personal
characteristics.

To verify this hypothesis, we considered our proposed approach which consists of
using AdaBoost for learning and selecting only the most discriminative spatiotempo-
ral features. First, we tested AdaBoost with VLBP features and obtained recognition
rates of 96.5%, 89.1% and 94.4% on MoBo, Honda/UCSD and CRIM databases, re-
spectively. As shown in Tables 4-6, performing feature selection yields in significant
performance enhancement on all these three databases. This validates our hypothesis
that only some part of the temporal information is useful for recognition while another
part may hinder the recognition process.

Then, we experimented with the proposed extended set of VLBP features (EVLBP)
introduced in Section 2 and used AdaBoost for learning the most discriminative spa-
tiotemporal EVLBP features. As expected, this enhanced further the performances,
yielding in excellent recognition rates of 97.9%, 96.0% and 98.5% on MoBo, Honda
/UCSD and CRIM databases, respectively. This additional performance enhancement
explains the benefit of enriching the VLBP feature set by deriving EVLBP and shows
the limitations of VLBPL,P,R operator which does not encode well enough the tempo-
ral information in the face sequences since the operator considers neighboring points
only from three frames and therefore the information in the frames with time variance
less than L are missed out.

Notice that the obtained results significantly outperform those of all benchmarks
methods (PCA, LDA, LBP, HMM and ARMA) on the three databases (comparison be-
tween Tables 1-3 and Table 4-6). To our knowledge, this is also the best performance
on these databases. Perhaps, these excellent results can be explained as follows: (i) the
spatiotemporal representation using extended volume LBP features, in contrast to the
HMM based approach, is very efficient as it codifies the local and global facial dynam-
ics and structure; and more importantly (ii) the temporal information extracted by the
extended volume LBP features consisted of both intra and extra personal information
(facial expression and identity). Therefore, there was need for performing feature selec-
tion. In addition, the selected EVLBP spatiotemporal features were assigned different
weights reflecting their contributions to recognition, while this was not the case in other
methods.
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Table 4. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBoost on
MoBo database

Method Recognition rate

VLBP [14] 90.3%
VLBP+AdaBoost 96.5%
EVLBP+AdaBoost 97.9%

Table 5. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBoost on
Honda/UCSD database

Method Recognition rate

VLBP [14] 78.3%
VLBP+AdaBoost 89.1%
EVLBP+AdaBoost 96.0%

Table 6. Recognition results of VLBP, VLBP with AdaBoost and EVLBP with AdaBoost on
CRIM database

Method Recognition rate

VLBP [14] 88.7%
VLBP+AdaBoost 94.4%
EVLBP+AdaBoost 98.5%

Analyzing the selected local regions (the rectangular prisms) from which the EVLBP
features were collected, we noticed that the dynamics of the whole face and the eye
area are more important than that of the mouth region for identity recognition. This is
a little surprising in the sense that one can expect that the mouth region would play an
important role as it is the most non-rigid region of the face when an individual is talking.
Perhaps, mouth region does play an important role but for facial expression recognition.
Fig. 6 shows examples of the most discriminative spatiotemporal regions returned by
AdaBoost for CRIM face sequences and from which EVLBP spatiotemporal features
are extracted. Notice that these four first selected features are extracted from global
and local regions. This supports the results of other researchers indicating that both
global and local features are useful for recognition. From how many selected regions
the EVLBP features are computed? Fig. 7 shows the recognition results as a function
of the number of regions selected by AdaBoost. The best results are obtained with 9,
16 and 6 regions on MoBo, Honda/UCSD and CRIM databases, respectively. Using
additional regions did not enhance the recognition performance.

Table 7 summarizes the obtained results using the different methods (PCA, LDA,
LBP, HMM, ARMA, VLBP and EVLBP) on the three databases (MoBo, Honda/UCSD
and CRIM).
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Fig. 6. Examples of the four first selected rectangular prisms from which EVLBP spatiotemporal
features are extracted on CRIM face sequences

Fig. 7. The recognition rates function of the number of selected regions with AdaBoost from
which EVLBP features are extracted

Table 7. Summary of the obtained results using the different methods on the three databases

Method Results on MoBo Results on Honda/UCSD Results on CRIM

PCA 87.1% 69.9% 89.7%
LDA 90.8% 74.5% 91.5%
LBP [13] 91.3% 79.6% 93.0%
HMM [8] 92.3% 84.2% 85.4%
ARMA [7] 93.4% 84.9% 80.0%
VLBP [14] 90.3% 78.3% 88.7%
VLBP+AdaBoost 96.5% 89.1% 94.4%
EVLBP+AdaBoost 97.9% 96.0% 98.5%

5 Conclusion

The few works attempting to use spatiotemporal representations for face recognition
from videos ignore the fact that some of the facial information may also hinder the
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recognition process. Indeed, while one may not expect worse results using spatiotempo-
ral representations instead of still image based ones, our results showed that still image
based methods can perform better than spatiotemporal based ones. This suggests that
the existing spatiotemporal representations have not yet shown their full potential and
need further investigation.

From this observation, we presented a novel approach for spatiotemporal face recog-
nition with excellent results. The efficiency of the proposed approach can be explained
by the local nature of the spatiotemporal EVLBP based description, combined with the
use of boosting for selecting only the personal specific information related to identity
while discarding the information which is related to facial expression and emotions.
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Signs with Systematic Modulations
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Abstract. This paper addresses an aspect of sign language (SL) recogni-
tion that has largely been overlooked in previous work and yet is integral
to signed communication. It is the most comprehensive work to-date on
recognizing complex variations in sign appearances due to grammatical
processes (inflections) which systematically modulate the temporal and
spatial dimensions of a root sign word to convey information in addition
to lexical meaning. We propose a novel dynamic Bayesian network –
the Multichannel Hierarchical Hidden Markov Model (MH-HMM)– as a
modelling and recognition framework for continuously signed sentences
that include modulated signs. This models the hierarchical, sequential
and parallel organization in signing while requiring synchronization be-
tween parallel data streams at sign boundaries. Experimental results
using particle filtering for decoding demonstrate the feasibility of using
the MH-HMM for recognizing inflected signs in continuous sentences.

1 Introduction

In sign language (SL) communication, a large number of complex variations in
manual sign (i.e. hand/arm gesture) appearances are possible due to grammati-
cal processes that systematically change the sign appearance to convey informa-
tion in addition to the lexical meaning. This includes information expressed in
English through prefixes, suffixes or additional words like adverbs. Hence, while
information is expressed in English by using additional syllables and words as
necessary rather than changing a given word’s form, in SL, it is often expressed
through a change in the form of the root sign word. Thus, just as there is a large
variety of prefixes, suffixes, and adverbs that may be used with a particular
word in English, there is also a large variety of different systematic appearance
changes that can be made to a root word in SL.

Much of SL recognition research has focused on solving problems similar to
those that occur in speech recognition, such as scalability to large vocabulary,
robustness to noise and person independence. These are worthy problems to
consider and solving them is crucial to building a practical SL recognition system.
However, the almost exclusive focus on these problems has resulted in systems
that can only recognize the lexical meanings conveyed in signs, and bypass the
richness and complexity of expression inherent in manual signing. Our work is a
step towards addressing this imbalance by focusing on recognizing the different
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sign appearances formed by modulating a root word, and extracting both the
lexical meaning and the additional grammatical information that is conveyed by
the different appearances.

Specifically, we model and extract information conveyed by two types of gram-
matical processes that produce systematic changes in manual sign appearance,
viz., directional use of verbs and temporal aspect inflections, described in
the next section. The signs and grammar described are with reference to American
Sign Language (ASL), which is extensively used by the deaf in North America and
is also well-researched by sign linguists and researchers in machine recognition.

For the rest of this paper, the terms word and sign are defined as follows. If
the lexical/word meaning and grammatical information conveyed by two SL hand
gestures is the same, then we consider it to be the same sign. However, gestures
that convey the same lexical/wordmeaning but different grammatical information
are defined to be the same word but different and distinct signs. So for example,
the same word inflected in different ways results in different signs.

1.1 Grammatical Processes in Signs

Sign linguists agree that signs have internal structure that can be broken down
into smaller parts [17], and they generally distinguish the basic parts or compo-
nents as consisting of the handshape, hand orientation, location and movement.
Handshape refers to the finger configuration, orientation to the direction in which
the palm and fingers are pointing, and location to where the hand is placed rela-
tive to the body. Hand movement includes both path movement that traces out a
trajectory in space, and movement of the fingers and wrist. Each of these compo-
nents have a limited number of possible categories, or “primes”. In the following
sections, we describe two types of grammatical processes and their effect on the
different sign components.

Directional Verbs. Signs with directional verb inflections are made with vari-
ous handshapes and movement path shapes to encode the lexical meaning of the
verb. Meanwhile, the movement path direction (the direction in which the hand is
moving in 3-dimensional space) serves as a pointing action to identify the subject
and the object of the verb [11].

Example 1. Figure 1(a) shows the sign which has lexical meaning TEACH and
with subject and object being the signer and the addressee, respectively (Eng-
lish translation: “I teach you”). Figure 1(b) shows the sign with the same lexical
meaning of TEACH, this time with subject and object being the addressee and
the signer, respectively (“You teach me”). In Figure 1(c), the subject of the verb
is indicated as the signer. The object is neither the signer nor the addressee but a
third person standing (off-camera) to the left of the signer.

Note that movement direction modulation is accompanied by changes in location
and palm orientation. For example, the final location of the hand depends on the
locations of entities these verbs are directed towards and the signer’s judgement
in tracing a path that leads from the starting point of the sign towards the entity
that is the verb’s object.
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Fig. 1. The sign TEACH pointing towards different subjects and objects : (a) “I teach
you”, (b) “You teach me”, (c) “I teach her/him (someone standing to the left of the
signer)”

Fig. 2. (a) The sign LOOK-AT (without any additional grammatical information), (b)
the sign LOOK − AT[DURATIONAL], conveying the concept “look at continuously”

Temporal Aspect Inflections. These inflections are represented by systematic
changes in the sign’s movement path, in terms of the path shape, size, rhythm and
speed.

Example 2. In Figure 2(a), the sign is uninflected and conveys the lexical mean-
ing LOOK-AT. It has a linear, straight movement path shape. In Figure 2(b),
the sign is modulated with the [DURATIONAL] inflection to give the meaning
“look at continuously”. The handshape of this inflected sign is the same as in
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its uninflected form but the movement of the sign is modified to show how the
action is performed with reference to time. The sign is performed repetitively in
a circular path shape with smooth motion. Examples of other signs that can be
inflected in this way are WRITE, SIT, LOOK-AT and 33 other signs listed by
Klima and Bellugi in [10].

Fig. 3. Signs with the same lexical meaning, ASK, but with different temporal aspect
inflections (from [15]) (i) [HABITUAL], meaning “ask regularly”, (ii) [ITERATIVE],
meaning “ask over and over again”, (iii) [DURATIONAL], meaning “ask continuously”,
(iv) [CONTINUATIVE], meaning “ask for a long time”

Figure 3 shows illustrations of the signs expressing the lexical meaning ASK,
with different types of aspectual inflections - [HABITUAL], [ITERATIVE], [DU-
RATIONAL], and [CONTINUATIVE]. In terms of rhythm and speed, the [DU-
RATIONAL] and [HABITUAL] inflections induce smooth motion at a constant
rate while the [CONTINUATIVE] and [ITERATIVE] inflections induce uneven
motion.

The meanings conveyed through these modulations in movement are
associated with aspects of the verbs that involve frequency, duration, recurrence,
permanence, and intensity [10,15]. Besides the examples mentioned above, other
meanings that may be conveyed include “incessantly”, “from time to time”, “start-
ing to”, “increasingly”, “gradually”, “resulting in”, “with ease”, “readily”, “ap-
proximately” and “excessively”. Klima and Bellugi [10] lists 11 different types of
aspectual meanings that can be expressed. Note that the aspectual information
is conveyed in addition to and without changing the lexical meaning of the root
word.

Multiple Simultaneous Grammatical Information. In ASL, multiple gram-
matical information may be conveyed through a single sign, by creating complex
spatio-temporal sign forms [10]. This is possible because the modulations of sign
movement due to different categories of grammatical processes affect different
characteristics of movement. For example, a directional verb points to its subject
and object through the direction of the movement. Whereas, if the verb is marked
for aspectual meaning, this is expressed through the movement path shape, size
and speed. So for example, we can express the meaning “you give to me regularly”
as distinct from “you give to me continuously” or “I give to you regularly” and so
on. The sign vocabulary in the experiments reported in Section 4 includes signs
conveying such multiple simultaneous grammatical information.

Previous Work. Generally there have been very few works that address gram-
matical processes that affect sign appearance in systematic ways. Sagawa and
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Takeuchi [16] deciphered the subject-object pairs of Japanese Sign Language (JSL)
verbs in sentences by learning the (Gaussian) probability densities of various spa-
tial parameters of the verb’s movement from training examples and thereby cal-
culated the probabilities of spatial parameters in test data. Six different sentences
constructed from two verbs and three different subject-object pairs, were tested
on the same signer that provided the training set, and were recognized with an av-
erage word accuracy of 93.4%. Braffort [4] proposed an architecture where hidden
Markov models (HMMs) were employed for classifying lexical words using all the
features of the sign gesture (glove finger flexure values, tracker location and orien-
tation), while directional verbs were classified by their movement trajectory alone.
Sentences comprising seven signs were successfully recognized with 92-96% word
accuracy. The main weaknesses of these works is that firstly they recognize a very
limited number of different signs. There are six different sign appearances in [16]
and seven signs in [4]. Secondly, they tackle signs that exhibit spatial variations
only. Thirdly, only one type of variation is expressed in the signs at any one time,
and there are no instances of multiple simultaneous grammatical information be-
ing expressed through multiple simultaneous systematic variations. Compared to
the above, the work presented in this paper recognizes a much more expansive
vocabulary of 98 signs, including signs exhibiting temporal as well as spatial vari-
ations. Signs with multiple inflections are also recognized. This paper extends our
work on isolated gestures previously reported in [14].

2 Proposed Approach

Our approach to recognizing inflected signs is to probabilistically model the ef-
fect of lexical and grammatical information on the sign appearance and then use
the model to infer the information conveyed, through observing the physical sign
appearance.

Besides movement path attributes, directional verb and temporal aspect inflec-
tions also affect the location and orientation sign components, as follows:

– Directional verb inflections: the movement direction modulation is accompa-
nied by a change in hand location and palm orientation.

– Temporal aspect inflections: the movement path shape and size modulations
also affect the hand location.

We use the fact that the effect of the inflections above appear in both the loca-
tion and orientation components to reduce the number of sign components that
need to be modelled. Thus taking into account that lexical word meaning affects
the handshape, location and orientation sign components, we find that only three
sign components need to be modelled – handshape, location and orientation.
These components are assumed to be independent, with distinct values (“primes”)
that are classified from separate feature sets. The advantage of this simplifying as-
sumption is that we need never model the interaction between all the components
in a sign, thereby greatly reducing the number of model parameters. We consider a
sign as consisting of synchronized sequences of distinct values in each of the three
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components. The synchronization is at the start and end of the sign, since each
component expresses the same sign at the same time.

3 Modelling Signs with the Multichannel Hierarchical
Hidden Markov Model (MH-HMM)

Hierarchical hidden Markov models (H-HMM) [6,12] have been proposed as a suit-
able dynamic Bayesian network (DBN) structure for modelling domains with hier-
archical processes that evolve at multiple time scales. An example of such a process
is speech, where phones combine sequentially to form words, and combinations of
words form sentences. Each level (sentence, word, phone) evolves at a different
time scale, with state evolutions at higher levels dependent on state sequences
finishing at the lower levels. For example, the next word in a sentence can start
only when the phone sequence of the current word has ended.

SL manual sign sequences differ from the above domains in that they not only
exhibit hierarchical structure, but also consist of multiple data streams, corre-
sponding to each sign component. Our approach represents signs as parallel and
simultaneous sequences of values in each of the sign components of handshape, lo-
cation and orientation. We can consider these component values as the equivalent
of phone subunits in speech. So a sign is decomposed as a sequence of phones in
each component stream. And we require that for any particular sign in the sen-
tence, the phone sequence for that sign in each component stream should start
and end at the same time.

We propose the Multichannel Hierarchical Hidden Markov model (MH-HMM)
as a DBN suitable for simultaneously modelling both the hierarchical and the par-
allel structure in sign sequences. This structure is shown in Figure 4. The MH-
HMM models a sentence as made up of a sequence of signs, and each sign as made
up of parallel phone sequences, one in each sign component. In our applications,
component 1 corresponds to handshape, component 2 is orientaion, and compo-
nent 3 is location. Most of the previous work in combining multiple data streams
either modelled a flat structure for the parallel data streams (e.g multistream
HMM [3], product HMM [9], parallel HMM [18], coupled HMM [5] and factorial
HMM [7]) or where multiple time-scales and a hierarchical structure was consid-
ered, modelled the higher and lower-levels of the hierarchy in a decoupled manner
(eg. layered HMM [13]). In contrast, the MH-HMM models multiple data streams
with hierarchical structure and different levels of the hierarchy are jointly mod-
elled. In addition, sign-level synchronization between component streams is ac-
complished through the use of a sync node, S2

t in Figure 4, such that none of the
components have priority in terms of synchronization. This is unlike the model
proposed in [8] where an acoustic feature stream and a video data stream are mod-
elled to perform audio-visual speech recognition, and the word transition times
are solely determined by the acoustic data stream. Another advantage of the MH-
HMM framework is that it allows training to be performed separately on each
component’s observation feature stream (described in the next section).
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Fig. 4. MH-HMM with two Q-levels and with synchronization between components at
sign boundaries (shown for a model with three components streams, and two time slices).
Dotted lines enclose component-specific nodes.

We define the conditional probability distributions (CPDs) for t > 1 in the
MH-HMM of Figure 4 as below.

P (Q1
t = j|Q1

t−1 = i, F 2 1
t−1 = b, F 1

t−1 = f) =

⎧
⎨

⎩

δ(i, j) if b = 0
Ã1(i, j) if b = 1 and f = 0
π1(j) if b = 1 and f = 1

P (F 1
t = 1|Q1

t = i, F 2 1
t = b) =

{
0 if b = 0
A1(i, end) if b = 1

P (Q2 c
t = j|Q2 c

t−1 = i, F 2 c
t−1 = f, Q1

t = k) =
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Ã2 c
k (i, j) if f = 0

π2 c
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P (F 2 c
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k (i, end)
P (Oc

t = oc
t |Q2 c

t = k) = N(oc
t ; μ

c
k
, Σc

k)
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for c = 1, 2, 3. Observed component features, Oc
t , are assumed to be continuous-

valued with Gaussian densities. Ad
k(i, j) is the state transition probability at level

d, indexed by parent value k (if parents exist). Ad
k(i, end) is the probability of end-

ing at state sequence. πd
k(j) is the initial state probability at level d, indexed by

parent value k. Ãd
k(i, j) and Ad

k(i, j) are related as follows.

Ãd
k(i, j)(1 − Ad

k(i, end)) = Ad
k(i, j)

The CPD of S2
t is defined as the EX-NOR function (see Table 1).

The key difference between the MH-HMM and the H-HMM is that in the MH-
HMM, there is one set of sign-level nodes, Q1

t and F 1
t , but multiple sets of phone-

level and observation feature nodes. In Figure 4 there are three component streams
and therefore three sets each of Q2 c

t , F 2 c
t , and Oc

t nodes, with c = 1, 2, 3. (In
general, we can expand the model to as many sets, Nc, of the above nodes as re-
quired to model multiple component data streams.) The phone-level nodes share
the same parent sign node (Q1

t ). So at any instant in time, the phone sequences in
each component are associated with a common sign value. However, each compo-
nent c has a separate set of phone-level nodes (Q2 c

t and F 2 c
t , c = 1, . . . , Nc), and

observation feature nodes (Oc
t , c = 1, . . . , Nc). So within the time period of a sign,

the different component data streams can have different phone state evolution dy-
namics, where the phone values in one component stream may be changing faster
or slower than those in another component stream. At sign boundaries however,
the phone sequences for the current sign in all Nc components are required to end,
and the phone sequences in all components for the next sign must start. In the MH-
HMM, this is achieved by forcing F 2 c

t (which indicates when the phone sequence
of the c-th component has ended), for c = 1, . . . , Nc, to all have values of 0 or all
have values of 1. The synchronization node S2

t , is the common child of the F 2 c
t

nodes and since the CPD of S2
t is defined as the EX-NOR function, S2

t = 1 only
when its parents either all have values of 1 or all have values of 0. When the MH-
HMM is used for recognizing continuous signing, for example, when we input the

Table 1. CPD for the sign synchronization node S2
t in a MH-HMM modelling three

components. The CPD implements the EX-NOR function.

P (S2
t |F 2 1

t , F 2 2
t , F 2 3

t )
F 2 1

t F 2 2
t F 2 3

t S2
t = 0 S2

t = 1

0 0 0 0 1
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 0
1 1 1 0 1
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data from a test sentence, we set S2
t = 1 in all time slices to enforce sign-level

synchronization.

3.1 MH-HMM Training and Testing Procedure

In the MH-HMM, the sentence model, i.e. the possible sign sequences, are encoded
in the CPD parameters of the sign-level nodes Q1

t and F 1
t . For a particular sign,

there is not one but Nc sets of component-specific phone-level state initial, transi-
tion and ending probabilities encoded in the CPD parameters for nodes Q2 c

t and
F 2 c

t . For each phone in the c-th component, the output probability distributions
for phone are also specific to the component and are defined by the CPD of the
component’s observation feature Oc

t .
Our training and modelling strategy is to learn the component-specific phone-

level state initial, transition and ending probabilities and output probability dis-
tributions by learning each component’s parameters independently of each other
and with independent observation feature sets. This training is done using the (sin-
gle channel) H-HMM (refer Figure 5). The parameters of this DBN are estimated
with the maximum likelihood (ML) criterion, using the expectation-maximization
(EM) training algorithm. All the terms required in the E-step can be obtained
from any DBN inferencing algorithm such as the forward interface algorithm [12].
After training, the learned component-specific parameters are combined in the
MH-HMM by specifying the CPD parameters for the component-specific phone-
level nodes (Q2 c

t and F 2 c
t ), and observation feature nodes (Oc

t ), for c = 1, . . . , Nc.
The sentence model for a particular set of sentences can be straight-forwardly de-
termined from knowledge of the sign sequences that appear in the sentence set.
For example, the probability of a particular sign starting a sentence is simply the
relative frequency of that sign appearing at the start of the sentences within the
set. We thus specify the sentence model, i.e. the CPD parameters of sign-level
nodes (Q1

t and F 1
t ), by taking into account the sign sequences that appear in the

training sentence set. The remaining node in the MH-HMM is the sychroniza-
tion node S2

t whose CPD parameters are specified to implement the EX-NOR
function.

After the procedure above, the MH-HMM can be used for recognition of con-
tinuously signed sentences. To recognize a test sentence, the values of all observed
nodes in each time slice are input to the MH-HMM, and the most-likely sign se-
quence that could have produced the observed values is inferred (here observed
nodes refers to nodes with known values). In our testing procedure, the observed
nodes at time t include not just the observation features of all the components,
Oc

t , for c = 1, . . . , Nc, but also the nodes S2
t and F 1

t . As mentioned above, in order
to enforce synchronization between component streams at sign boundaries, the
value of the S2

t node must be set as 1 in all time slices. We also set F 1
t = 0 for

t = 1 . . . , T − 1 and F 1
T = 1, indicating that for each test sequence, the sentence

ends only at the last time slice and not before [12].
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Fig. 5. H-HMM with two Q-levels for training sign component c. Nodes indexed by
superscript c pertain to the specific component (e.g. Q2 c
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Time and space complexity is an issue for decoding because of the large number
of hidden variables in our network. Hence, it is necessary to use approximate in-
ferencing methods to reduce time and space requirements to a manageable level.
Particle filtering (PF) and other sampling-based algorithms have the advantage
of being easy to implement on various kinds of models and giving exact answers
in the limit of infinite number of samples [12]. Thus we apply PF for decoding test
sentences in the MH-HMM (details omitted here).

4 Experimental Results

4.1 Sign Vocabulary and Sentences

The collected data is obtained from a deaf individual who is a native signer of
the local (Singaporean) sign language. The signed sentences, which adhered to
ASL grammar, were continuous, with no pauses between signs. There were 73 dis-
tinct sentences between 2 to 6 signs long, constructed from a 98-sign vocabulary.
Each distinct sentence was signed approximately 5 times, providing a total of 343
sentences and 1927 signs. The 98-sign vocabulary includes signs formed from a
combination of a root lexical word and one or more directional verb and temporal
aspect inflection values. There are 29 different lexical words present in the vocab-
ulary, three different temporal aspect inflection values ([DURATIONAL], [HA-
BITUAL], [CONTINUATIVE]) and 11 different directional verb inflection values
(see Table 2) that may combine with a root lexical word.

Examples of directional verb and temporal aspect inflected signs in the vocab-
ulary are given below:

– The root verb HELP, combined with inflection values indicating different sub-
jects and objects, yields: HELPI→YOU, HELPYOU→I, HELPI→GIRL,
HELPI→JOHN, HELPJOHN→I, HELPJOHN→YOU, HELPYOU→HELP,
HELPGIRL→I, HELPGIRL→YOU, HELPYOU→GIRL, HELPGIRL→JOHN.
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Table 2. Directional verb inflections used in constructing signs for the experiments

VERBI→YOU, VERBYOU→I, VERBI→GIRL, VERBGIRL→I, VERBI→JOHN, VERBJOHN→I,
VERBYOU→GIRL, VERBGIRL→YOU, VERBYOU→JOHN, VERBJOHN→YOU,

VERBGIRL→JOHN

– The rootwordEAT, combinedwithdifferent temporal aspect inflections yields:
EAT[DURATIONAL], EAT[HABITUAL], EAT[CONTINUATIVE].

Some of the inflected signs are formed with two inflection values which ap-
pear simultaneously, further increasing the complexity of the vocabulary. Exam-
ples of these signs are: (GIVE[DURATIONAL])I→GIRL, (GIVE[HABITUAL])I→GIRL,
(GIVE[CONTINUATIVE])I→GIRL. A few of the lexical root words are used in com-
bination with various inflection values to form many different signs, for example,
the lexical word GIVE appears in 16 different signs.

4.2 Data Measurement and Feature Extraction

Data was obtained using the Polhemus electromagnetic tracker [1] which consists
of an electromagnetic field-emitting transmitter and sensors that detect their 3-
dimensional position and orientation within the field. Sensors were placed on the
back of the signer’s right hand and the base of his spine. Conceptually, each sensor
has an attached orthogonal coordinate frame. The position and orientation of the
right hand’s sensor is represented by the 3-dimensional coordinates of its origin, x,
y, and z axes (oH , xH , y

H
, and zH), relative to the waist sensor’s coordinate frame.

The waist sensor’s coordinate frame was used as a reference to discount variations
in the signer’s position and the direction he is facing, relative to the transmitter. In
addition, we also collected data from a Virtual Technologies Cyberglove [2] worn
on the right hand. This records the fingers’ joint and abduction angles, and the
wrist pitch and yaw, from 18 sensors in the glove. The tracker and glove data are
synchronized and were recorded at approximately 31.1ms frame rate.

The features used as observations for the three sign components in our model
are given below:

– Handshape component. Data measured by 16 sensors of the Cyberglove, re-
porting the joint and abduction angles of the right hand’s fingers and thumb.
The data reported by the two sensors measuring wrist yaw and pitch were
not used because this data does not represent the finger configurations. The
feature vector for the handshape component is 16-dimensional.

– Location component. The 3-dimensional position of the right hand, oH , taken
to be the origin of the sensor’s coordinate frame. The feature vector for the
location component is 3-dimensional.

– Orientation component. The unit vector corresponding to the z-axis, zH , of
the right hand sensor, with reference to the waist sensor’s coordinate frame.
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Recall from Section 1.1 that the hand orientation is defined as the direction in
which the palm and fingers are pointing. Here however, we only extract fea-
tures measuring the palm direction because measurements pertaining to the
fingers are already extracted in the feature vector of the handshape compo-
nent. Figure 6 shows a schematic of how the sensor is mounted on the back of
the right hand. The x, y and z-axes of the right hand sensor’s coordinate frame
are shown. The sensor’s z-axis direction is roughly coincident with the direc-
tion in which the palm is pointing thus its corresponding unit vector indicate
the palm orientation. We note that left-right rotation (i.e. hand rotations in
the x-y plane) would not register a change in the z-axis direction. So our choice
of features is based on a simplifying assumption that the direction in which
the palm is pointing is more relevant than the left-right wrist rotation. The
feature vector for the orientation component is 3-dimensional.

y

x

z

Fig. 6. Schematic representation of how the Polhemus tracker sensor is mounted on the
back of the right hand. The z-axis of the sensor’s coordinate frame is pointing into the
page, i.e. it is approximately coincident with the direction that the palm is facing.

4.3 Training and Testing on a Single Component

The training procedure for learning component-specific CPD parameters is as de-
scribed in Section 3.1. Starting from initial model parameters for the H-HMM, the
iterative steps in the EM algorithm are repeated until it converged. Training uses
constrained sentence models reflecting the correct sign sequence in training sen-
tences. In the E-step, inferencing uses the forward interface inferencing algorithm
for DBNs [12]. The observations features for all three components are as described
in Section 4.2.

The trained H-HMM models for handshape, orientation and location compo-
nents are tested for sign recognition on the test sentence set. Inferencing during
testing obtains the most-probable assignment of values to all the hidden nodes in
the model. We use the forward interface algorithm in this decoding step. The sign
accuracy results for the three trained models are shown in Table 3.

Note that a sign is recognized as correct if values of all the sign-level nodes are
inferred correctly, i.e. the lexical word, directional verb inflection and temporal
aspect inflection values must all be correct. With this criterion, sign accuracy is
defined as follows. Let Ns denote the total number of signs appearing in the test
set, Ss the number of substitutions, Ds the number of deletions, and Is the number
of insertions. The sign accuracy, Accs, is thus:
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Table 3. Test results on trained models for two Q-level H-HMMs for handshape, orien-
tation and location components

Trained model Accs (%) AccSents (%) Ds Ss Is Ns

Handshape component H-HMM 73.1 12.7 11 199 2 788
Orientation component H-HMM 85.0 36.6 16 95 7 788
Location component H-HMM 78.4 18.3 11 150 9 788

Accs =
Ns − Ss − Ds − Is

Ns

Sentence accuracy, AccSents, is defined by the fraction of sentences without
any recognition errors.

4.4 Testing on Combined Model

A MH-HMM modelling the location, handshape and orientation components is
constructed by combining the component-specific CPD parameters learned in Sec-
tion 4.3 (also see Section 3.1). The MH-HMM is shown in Figure 4. We presented
the observed values of the component features Oc

t , for components c = 1, 2, 3 from
the test set sentences. Synchronizationbetween component streams at sign bound-
aries was enforced by setting S2

t = 1, for 1 ≤ t ≤ T . We also set F 1
t = 0 for

t = 1 . . . , T − 1 and as F 1
T = 1. With these observed node values, the most proba-

ble sign sequence in each sentence was inferred using PF. The sign accuracy results
for this MH-HMM are shown in Table 4 for different number of samples used in
the PF algorithm.

Table 4. Test results on MH-HMM combining trained models of location, handshape
and orientation components

Num. of Accs AccSentsDs Ss Is Ns

samples (%) (%)

3000 92.0 58.5 7 56 0 788
5000 92.4 62.0 4 53 3 788
10000 92.6 61.3 6 50 2 788
15000 92.6 62.7 5 50 3 788
20000 93.4 66.2 4 45 3 788
25000 93.9 68.3 5 42 1 788
30000 92.9 64.8 8 45 3 788
40000 93.7 68.3 6 40 4 788

The sign recognition accuracy is greatly improved compared to single compo-
nent decoding results (compare Table 3). Since more data is available as observed
features streams in the combined model, the improved sign recognition results is
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to be expected. The PF algorithm is expected to give better inferencing results
with increased number of samples, theoretically approaching results that would
be obtained using exact inferencing at the limit of infinite number of samples.
The results in Table 4 show an improvement in sentence accuracy, AccSents, with
increased number of samples. It might be worth increasing the number of sam-
ples beyond the maximum 40000 that we experimented with, to investigate if this
would produce further improvement in the sentence accuracy, which is currently
quite low considering the relatively high sign accuracy.

The correspondence between sample number and accuracy is however not seen
in the other accuracy measurements. The maximum sign accuracy (Accs) of 93.9%
was obtained with 25000 samples and not with the maximum number of 40000
samples that we ran experiments with. The maximum word accuracy (Accw) of
98.9% was also obtained with less than 40000 samples. Due to the stochastic na-
ture of the inferencing algorithm, we would have to run a few sets of experiments
with the same number of samples before we can conclude if it is indeed the case
that we get diminishing returns in sign and word accuracy beyond 20000 to 25000
samples.

5 Conclusions

We have shown decoding results on experimental sign vocabulary including signs
with complex and multiple inflection values. Best sign and sentence accuracies of
93.9% and 68.3% respectively indicate the feasibility of our approach using the
MH-HMM. We are currently working on modelling movement path attributes ex-
plicitly in the MH-HMM, including direction, shape, size and speed. Some features
currently being explored include curvature, centroid distance function and Fourier
transform based features.
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Abstract. This paper addresses the recovery of face models from stereo pairs
of images in the presence of foreign-body occlusions. In the proposed approach,
a 3D morphable model (3DMM) for faces is augmented by an occlusion map
defined on the model shape, and occlusion is detected with minimal computa-
tional overhead by incorporating robust estimators in the fitting process. Addi-
tionally, the method uses an explicit model for texture (or reflectance) in addition
to shape, which is in contrast to most existing multi-view methods that use a
shape model alone. We argue that both model components are required to han-
dle certain classes of occluders, and we present empirical results to support this
claim. In fact, the empirical results in this paper suggest that even in the absence
of occlusions, stereo reconstruction using existing shape-only face models can
perform poorly by some measures, and that the inclusion of an explicit texture
model may be worth its computational expense.

1 Introduction

Being able to automatically recognize faces, track them, and estimate their expression
and pose are important for many applications. Performing these tasks reliably requires
the ability to represent the appearance of faces over large variations in illumination and
viewpoint. It also requires the ability to model the effects of occlusions—both self-
occlusions caused by the face itself and occlusions caused by “foreign bodies” (eye
glasses, long facial hair, clothing, hands and limbs, etc.) in the environment.

Illumination effects can often be well-represented using purely image-based methods
(e.g. [1,2,3,4]), but to effectively handle extreme changes in 3D pose, one typically re-
quires a mechanism for “warping” 2D images. 3D morphable models (3DMMs), which
are parametric models of shape and reflectance, are useful for this purpose because they
explicitly represent 3D shape and therefore handle self-occlusions in a natural way.

In a 3D model-based approach, one is faced with the problem of finding the para-
meters of the model that best explain the input data. The estimated model parameters
can then be used to perform recognition, track the face, detect expressions, synthesize
new images, etc. The fitting problem is complicated in the presence of foreign-body
occluders, because unlike self-occlusions, the image effects induced by foreign bodies
cannot be explained by the face model.

In this paper we present a 3D model-based method for face reconstruction and recog-
nition that exploits stereo imaging to handle foreign body occlusions. In the proposed
approach, occlusion is represented using a single occlusion map defined on the 3D

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 31–45, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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shape model, and this occlusion map is recovered efficiently by incorporating robust
estimators in the fitting process.

In addition to including an occlusion map, we differentiate between two types of
constraints for fitting a model to multiple views. According to the first constraint, each
image should agree with a given model’s shape and reflectance; and according to the
second, the images should agree with each other given the model’s shape. We find that
the importance of these two constraints (roughly speaking, the “texture match” and the
“stereo match”) varies depending on the type of foreign body occluders that are present.
We also find that even in the absence of occluders, explicitly enforcing the texture match
constraint significantly improves fitting accuracy in comparison to an approach that uses
the stereo match constraint alone (suggested in [5]).

1.1 Related Work

3D Morphable Models (3DMMs) [6] use high resolution linear 3D shape and texture
models to represent faces. Typically, this model is fit to an input image by minimizing an
energy function that measures the difference between intensities in the observed image
and those predicted by the model. Recognition can be performed based on the model
parameters [7] or by using the model to synthesize new views of the face in a canonical
pose and lighting configuration [8].

Using a stereo pair for the fitting of a 3DMM imposes additional geometric con-
straints on the face shape, which can improve the quality of results. Also, by imposing
a stereo matching constraint, the fitting of the shape and texture parameters can be
decoupled [5]. According to this approach, the shape parameters are recovered by mini-
mizing the per vertex intensity differences between two calibrated views, and the texture
is estimated separately using this shape. While the decoupling of shape and texture is
appealing from an efficiency standpoint, the results we show here suggest that there are
significant benefits to estimating both components jointly.

Explicit handling of foreign-body occlusions has been addressed for the case of
monocular fitting of 3DMMs in [9], where a generalized EM algorithm is used to alter-
nate between the estimation of a visibility map given the model and the model parame-
ters given the visibility map. To account for spatial coherence of occluders the visibility
map is modeled by a Markov random field (MRF) on the image plane. In contrast, we
model occlusions using a visibility map on the surface, and approximate the occlusion
process using a robust estimator. While it gives up the preference for spatial coher-
ence, the proposed approach can be implemented with little computational overhead.
In addition, it can be easily extended to more views, since the occlusion map is on the
surface.

Also related to this work are 2D active appearance models (AAMs), which trade
precision for speed and are often used for tracking. 2D AAMs [10] typically use low-
resolution 2D deformable shapes along with linear texture models. The fitting is done
by matching a warped face image (with the warping being given by the linear shape
model) against the linear texture model, and solving for the shape and texture parame-
ters that give the best fit. Performance can be improved using an extension to the inverse
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compositional image alignment algorithm [11], by including 3D constraints [12], or
by using multiple views [13, 14]. Fitting AAMs in the presence of occlusions can also
be approached using robust estimators [15]. The main advantages of the 3D approach
over 2D AAMs are the ability to directly model lighting effects because it has access to
surface normals and to more easily handle self-occlusions.

2 Background

2.1 3D Morphable Models for Faces

As a 3D morphable model for faces, we use the shape and texture bases (3DFS-100)
made available by the University of Freiburg [6]. These bases were obtained by first
concatenating the N vertices (or RGB color values in the case of texture) of each scan i
of a large set of high resolution 3D face scans into vectors (FSi for shape, and FTi for
texture), and putting them into correspondence. That is, the vectors are made such that
the same entry in each vector corresponds to the same facial feature [16, 17, 18]. These
vectors are denoted:

FSi = [[Xi
1Y i

1Zi
1]...[X

i
NY i

NZi
N ]], FTi = [[Ri

1Gi
1Bi

1]...[R
i
NGi

NBi
N ]]

Principal component analysis (PCA) is performed on this set of vectors, and the most
significant eigenvectors are used as bases for shape and texture. Shape and texture are
then expressed as linear combinations of these basis elements:

S = S0 +
m

∑
i=1

αiSi, T = T0 +
m

∑
i=1

βiTi,

where S0 and T0 are the average face shape and texture and (S1,...,Sm) and (T1, ...,
Tm) are the eigenvectors of shape and texture respectively. Here, Si,Ti ∈ R

3N . Thus,
in this model, faces are represented by the set of coefficients α = (α1, ...,αm) and
β = (β1, ...,βm) that correspond to their shape and texture.

If one assumes the coefficients are drawn from independent normal distributions,
PCA also gives an estimate of their probability distributions;

P(α) ∝ exp(−1
2

m

∑
i=1

α2
i

σ2
i

), P(β ) ∝ exp(−1
2

m

∑
i=1

β 2
i

γ2
i

), (1)

where σi and γi are determined by the respective eigenvalues of the covariance matrices
of {FSi} and {FTi}.

2.2 Image Formation Model

We assume faces to be in or close to the space spanned by the shape and texture
bases of Sect. 2.1. Then, given a face’s shape parameters α and a suitable rigid body
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transformation (rotation R and translation t, that align the face model with the actual
face), the true color value (γ(k)) of the face at the position corresponding to the face
model’s vertex k will equal that predicted by the model:

γ(k) ≈ Im(k), (2)

where Im(k) is the RGB value of the texture at vk as given by the texture parameters β ,
and a suitable set of lighting parameters.

For a lighting model, we assume the surface is Lambertian, and use (Ramb, Gamb,
Bamb) for the ambient light color, (Rdir, Gdir, Bdir) for the directional light color, (Roffset,
Goffset, Boffset) for the color channels offsets, and l for the directional light direction.
Then we have:

Im(k)R = Roffset + tkR · (Ramb + Rdir · (nk · l)), (3)

with similar definitions for the G,B channels. The symbol tk represents the kth RGB
value in the face model’s texture vector representation given the texture coefficients β ,
and nk represents the surface normal at vk.

Assume we are given a stereo pair (I1, I2) of face images captured from a pair of
calibrated cameras. Letting P1 and P2 denote the two camera projection matrices, and
assuming we are given the shape parameters α and rigid body transformation pa-
rameters (R, t), we have two available measurements of γ(k). These can be written
I1(P1(R(vk − c)+ c + t)) and I2(P2(R(vk − c)+ c + t)), where c is the centroid of the
average face shape. Assuming that the cameras are radiometrically calibrated (i.e., have
the same exposure, white balance, etc.) with additive Gaussian noise, a reasonable esti-
mator for γ(k) is:

γ̂(k) = Ī(vk,R,t)
�
=

I1(P1(R(vk − c)+ c + t))+ I2(P2(R(vk − c)+ c + t))
2

. (4)

Thus a simple approximation for the distribution of Im(k), given I1, I2,α,R,t is a normal
distribution with mean Ī and standard deviation σt (say):

Im(k) ∼ N(Ī(vk,R,t),σt). (5)

In addition, when α, I2,R,t are given, and again assuming that the cameras are ra-
diometrically calibrated, we can use the following model for the noisy observation in I1

of a vertex vk that is visible in both images:

I1(P1(R(vk − c)+ c + t)) ∼ N(I2(P2(R(vk − c)+ c + t)),σs). (6)

Note that if the cameras are not radiometrically calibrated, this can be generalized by
incorporating camera-dependent gains and offsets into I1 and I2.

For simplicity, we make use of the following notation in the next section:

ρ - the 6 parameters of the rigid body transformation (3 for R, 3 for t).
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τ - the 11 lighting parameters (3 for iamb, 3 for idir, 3 for io f f set , i={R,G,B}, and 2 for
l).

sk - the position of the kth model vertex given pose parameters (R, t) and shape parame-
ters α; sk = R(vk − c)+ c + t.

3 Robust Stereo Fitting of 3DMMs

3.1 Joint Shape and Texture Stereo Fitting

We use an energy function that incorporates both a shape model and a texture model by
combining terms derived from Eqs. 5 and 6, with regularization:

E = ∑
k|vk∈V

||I1(P1sk)− I2(P2sk)||2
σ2

s
︸ ︷︷ ︸

Stereo Match

+
m

∑
i=1

α2
i

σ2
i︸ ︷︷ ︸

Shape Prior

+ (7)

∑
k|vk∈V

||Im(k)− Ī(sk)||2
σ2

t
︸ ︷︷ ︸
Texture Model Match

+
m

∑
i=1

β 2
i

γ2
i︸ ︷︷ ︸

Texture Prior

.

Here, the symbol V is used to denote the set of vertices vk of the face model with
parameters (α,ρ) that are visible in both I1 and I2.

Model-fitting is performed by finding parameters α,β ,ρ ,τ that minimize E . This
can be interpreted in a MAP framework as a search for parameters (α ,β ,ρ ,τ) for which
the posterior P(α,β ,ρ ,τ|I1, I2) is maximal, and such an interpretation highlights the as-
sumptions underlying our approach. First, we expand the posterior as P(α,β ,ρ ,τ|I1,I2)=
P(α,ρ |I1,I2)· P(β ,τ|I1,I2,α,ρ). The first term is then rewritten P(α,ρ |I1, I2) ∝
P(I1|α,ρ , I2) ·P(α), which by Bayes’ rule, assumes that α,ρ , I2 are mutually indepen-
dent and that the distribution of face poses (ρ) is uniform. The assumption that shape
(α) and pose (ρ) are independent from I2 may seem non-trivial. But without knowledge
of face texture (β ), little can be inferred about I2, because any image I2 can be explained
by a suitably selected texture.

Using Eq. 6 we write:

P(I1|α,ρ , I2) ∝ ∏
k|vk∈V

exp

(
−1

2
||I1(P1sk)− I2(P2sk)||2

σ2
s

)
. (8)

and using Eq. 5 (assuming the texture (β ) and scene lighting (τ) independent, and τ
uniformly distributed), we write:

P(β ,τ|I1, I2,α,ρ) ∝ P(β ) · ∏
k|vk∈V

exp

(
−1

2
||Im(k)− Ī(sk)||2

σ2
t

)
. (9)

Finally, we obtain the energy E by substituting Eqs. 1,8 and 9 into our expression for
the posterior, taking the logarithm, negating it and ignoring constant factors.
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One can make the following observations about this energy function. First, suppose
one were to include only the last three terms in Eq. 7, which would correspond to maxi-
mizing P(I1|α,β ,ρ ,τ)·P(I2|α,β ,ρ ,τ)·P(α,β ). This approach would not account for the
correlation between I1 and I2. The two images are not independent given (α,β ,ρ ,τ)
because the true appearance of the face deviates from that given by the face model, and
consequently, the two prediction errors are correlated.

Second, suppose we were to ignore the third and the fourth terms in Eq. 7. This is the
approach taken in [5], and it corresponds to maximizing P(α,ρ |I1, I2) without including
a texture model. As we will show experimentally in Sect. 4, this approach can perform
poorly because it does not necessarily ensure that important features (eyes, eyebrows,
lips) are properly aligned.

Finally, we can compare our approach to an uncalibrated case in which one has no in-
formation about the stereo cameras. In this case, separate pose parameters (ρ1,ρ2) could
be used for each image, and one might seek to maximize P(α,β ,τ,ρ1,ρ2|I1, I2). In this
case, by the same argument as in the first observation, I1 and I2 are still not independent
given α,β ,τ,ρ1,ρ2, therefore maximizing P(I1|α,β ,τ,ρ1)· P(I2|α,β ,τ,ρ2)·P(α,β )
(which would be the trivial extension of the monocular fitting case to two images [6])
does not necessarily maximize P(α,β ,τ,ρ1,ρ2|I1,I2).

3.2 Handling Occlusion

While the approach in the previous section correctly handles cases of self-occlusion
(where one part of the face occludes another), it does not account for the possibility of
foreign-body occlusions. To handle such situations, we use a modified version of the
energy function in Eq. 7, introducing a robust estimator ha:

E ′ = ∑
k|vk∈V

ha

(
||I1(P1sk)− I2(P2sk)||2

σ2
s

+
||Im(k)− Ī(sk)||2

σ2
t

)
+

m

∑
i=1

α2
i

σ2
i

+
m

∑
i=1

β 2
i

γ2
i

(10)

This modification requires little change in the optimization procedure, and allows
the fitting to be significantly more robust to foreign-body occlusions (see Sect. 4.2).
Intuitively, by introducing the robust estimator we are limiting the impact in the energy
function of vertices whose stereo matching term or texture matching term are high.
More formally, this approach can be justified by introducing a binary occlusion map
O : {1, ..,N} → {0,1}N, defined on the set of all vertices of the face model. This map
dictates whether a vertex of the face model is occluded by a foreign-body in at least
one of the images (O(k) = 1) or not occluded in either (O(k) = 0). Thus, the image
formation model is altered so that the visible parts of the face present in the images are
generated only by vertices vk for which O(k) = 0.

In this setting, it can be shown that minimizing E ′ corresponds to searching for
α ,β ,ρ ,τ ,O for which P(α,β ,ρ ,τ,O|I1, I2) is maximal. Again, we can write P(α,β ,ρ ,
τ,O|I1, I2) = P(α,ρ ,O|I1, I2)·P(β ,τ|I1, I2,α,ρ ,O). We expand the first term by making
the same assumptions as those used in the previous section, obtaining P(α,ρ ,O|I1, I2) ∝
P(I1|α,ρ ,O, I2) ·P(α,O). The term P(I1|α,ρ ,O, I2) is then approximated as in Eq. 8,
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where the product is now over {k|vk ∈V,O(k)= 0}. In favor of simplicity and efficiency,
we ignore spatial coherence of occlusions, and assume O(k) ∼ i.i.d. Bernoulli, obtaining
the following prior on O:

P(O) ∝ ∏
k|vk∈V

exp(−ηo ·O(k)). (11)

Using this prior avoids the trivial labeling of all vertices being occluded during the
optimization process.

Combining these terms and assuming the shape (α) and occlusion map (O) to be
independent, we obtain an expression for P(α,ρ ,O|I1, I2). Substituting this expression
into the posterior along with an expression for the posterior’s second term similar to
Eq. 9 (but with the product over {k|vk ∈ V,O(k) = 0}, one sees that maximizing the
posterior corresponds to minimizing:

E ′′ = ∑
k|vk∈V

f (α,β ,ρ ,τ,O,k)+
m

∑
i=1

α2
i

σ2
i

+
m

∑
i=1

β 2
i

γ2
i

, (12)

where
f (α,β ,ρ ,τ,O,k) = g(α,β ,ρ ,τ,k) · (1 − O(k))+ 2ηo ·O(k), (13)

and

g(α,β ,ρ ,τ,k) =
||I1(P1sk)− I2(P2sk)||2

σ2
s

+
||Im(k)− Ī(sk)||2

σ2
t

. (14)

The minimization of E ′′ can be rearranged as:

min
α ,β ,ρ ,τ,O

E ′′ = min
α ,β ,ρ ,τ

{min
O

{ ∑
k|vk∈V

f (α,β ,ρ ,τ,O,k)}+
m

∑
i=1

α2
i

σ2
i

+
m

∑
i=1

β 2
i

γ2
i

} (15)

= min
α ,β ,ρ ,τ

{ ∑
k|vk∈V

h(g(α,β ,ρ ,τ,k),k)+
m

∑
i=1

α2
i

σ2
i

+
m

∑
i=1

β 2
i

γ2
i

} (16)

where

h(g(α,β ,ρ ,τ,k),k) = min
O(k)

{g(α,β ,ρ ,τ,k) · (1 − O(k))+ 2ηo ·O(k)}. (17)

Relaxing the binary process O(k) to an outlier process that varies continuously 0 ≤
Oa(k) ≤ 1, we can approximate h(g,k) by a robust function ha,

ha(g) = −σo · ln((1 − exp(− eo

σo
)) · exp(− g

σo
)+ exp(− eo

σo
)) (18)

with suitable parameters eo and σo. These parameters are determined empirically to
provide a smooth approximation of the min function (see Fig. 1). This leads to E ′ as in
Eq. 10, where the minimization is over α ,β ,ρ ,τ .
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Fig. 1. Robust estimator ha(g) (Eq. 18) used to handle foreign-body occlusions in the fitting
process: (a) eo = 300,σo = 1 (b) eo = 300,σo = 50

Following optimization, the occlusion map is recovered from (for vk ∈ V ):

O∗(k) = 1, if ha(g(α∗,β ∗,ρ∗,τ∗,k)) ≥ 2ηo − ε
O∗(k) = 0, if ha(g(α∗,β ∗,ρ∗,τ∗,k)) < 2ηo − ε,

where
(α∗,β ∗,ρ∗,τ∗) = arg min

α ,β ,ρ ,τ
E ′. (19)

3.3 On Foreign Body Occlusions

In a stereo setup, there can be several cases of foreign-body occlusion of a vertex of the
face model. We can classify these cases with respect to the positioning of the occluder
in (see Fig. 2): half-occlusion (HO), where the vertex is occluded in one of I1 or I2; full-
occlusion-near (FOn), where the vertex is occluded in both I1 and I2 and the occluding
object is close to the face; and full-occlusion-far (FO f ), where the occluder is far from
the face relative to the face size. We can also classify occluders with respect to their
texture, which can be one of: texture-less (non-skincolor); texture-less (skincolor); and
textured.

Depending on the type of occlusion, we expect either the stereo match term or the
texture match term to play a more prominent role in the fitting process (see Table 1). For
example, in the case of half-occlusion (HO) by a non-skinlike surface, one can expect
the stereo match term to provide an important cue as to whether a vertex is occluded.
This is because the observed intensities at the projections of a half-occluded vertex cor-
respond to observations of two very different surfaces. When the occlusion is of type
full-occlusion-near (FOn) on the other hand, the stereo match term will not provide
much help in determining an occlusion because the two observed intensities will come
from nearby locations on the occluder and will be very similar. In this case, provided
that the occluder has non-skinlike color, the texture match will be the most helpful in
determining its presence. Of course, when the occluder lacks texture and is skinlike,
there is little visual information to discriminate between it and the face.

Experimental results are shown in Sect. 4.2.



Model-Based Stereo with Occlusions 39

Fig. 2. Categories of foreign-body occlusions. From left to right, occlusions can be one of:
half-occlusion (HO), full-occlusion-near (FOn), full-occlusion-far (FO f ). The stereo and texture
terms play different roles in each case (see Table 1).

Table 1. Most relevant terms in the energy function for each of the occlusion cases: S for stereo
match term and T for texture match term (see Fig. 2)

Occluder classification HO FOn FO f

texture-less (non-skincolor) S T T
texture-less (skincolor) X X X
textured S T S+T

3.4 Optimization Procedure

Initial Fit. Like previous approaches [5,17], we assume that either by user selection, or
by means of an automated detection process, image coordinates of a subset of specific
feature points of the face (e.g. corners of the eyes, corners of the mouth, tip of the nose,
corners of the ears) in both I1 and I2 are available. (Some of the feature points may be
occluded in one or both images).

Let j1, .., jp denote the indices of the vertices in the face model corresponding to
these feature points. Starting from the average shape parameters (α = 0), we use a
quasi-newton gradient descent method to minimize

E f = ∑
i=1,..,p

δ1i||P1s ji − p1i||2 + δ2i||P2s ji − p2i||2, (20)

and obtain a rough initial estimate of the shape and rigid body transformation parame-
ters. Here, δ1i = 1 if the ith feature is visible in image I1 and 0 otherwise (and similarly
for δ2i and I2), p1i is the image coordinate of the ith feature in image I1, and p2i is the
image coordinate of the ith feature in image I2.

Optimization. For comparison purposes we evaluate the fitting performance of E and
E ′ with and without the texture model terms. In experiments where we utilize only
the stereo terms in E (or E ′), we start with model parameters α,ρ from the initial fit.
In experiments that include texture we also start with the average texture parameters
(β = 0), and lighting parameters τ such that iamb = 1, idir = 1 (i.e., white ambient and
directional lights), and ioffset = 0 (zero offset), where i = R,G,B. The lighting direction
l is initialized to be the bisector of the two cameras viewing directions.

We minimize:
E + λ ·E f (21)

with respect to the suitable parameters, using a stochastic quasi-newton gradient descent
method.



40 F. Romeiro and T. Zickler

To avoid local minima, we use a coarse-to-fine approach, with 3 levels of resolution.
At the coarsest resolution, we use versions of I1 and I2 that are downsampled by a factor
of four, together with a corresponding low resolution version of the 3D face model. As
we progress toward the finest level of resolution, we use smaller and smaller values for
λ , σs and σt , which gives smaller weights to the feature term and the shape and tex-
ture priors. At regular intervals (more frequently at coarser levels), we recompute the
self-occluded vertices (and thus V ) as well as the normals (nk). Instead of computing
the energy using all the vertices vk ∈ V , at each iteration we randomly select a sub-set
of these vertices on which to compute the energy (we use 1000, 2000 and 3000, at each
level of resolution). In this selection process, we select vertices with probability propor-
tional to the average (over the stereo pair) foreshortened area of the patch around them.
When we utilize the complete E or E ′, we sample at the baricenters of the triangles
of the mesh instead of the vertices because that allows for easier computation of the
gradient of the energy. In this case, both V and the occlusion map are defined over the
set of triangles, and k indexes the triangles that compose the model.

4 Experimental Results

We evaluated the procedure of Sect. 3.4 using the original energy (E) and the robust
energy (E ′), along with modifications of these energies obtained by excluding the tex-
ture terms. Throughout this section, we refer to these as stereo+ texture, stereo, robust
stereo+texture, and robust stereo, respectively. To ensure a valid comparison between
the different cases, we used equivalent parameters for the feature match weight (λ ) and
the model priors (σs and σt ) in each experiment. Only the first 40 shape and texture
basis vectors were used, since this was found to provide adequate results.

4.1 Accuracy in the Absence of Occlusions

To evaluate the benefits of incorporating a texture model in the absence of occlusions,
testing was performed on a subset of sixty individuals from the K.U. Leuven stereo face
database [5], which contains stereo pairs of each individual in eight different positions.
We obtained fitting results using the stereo and the stereo+texture methods for all eight
poses in each of the sixty people, for a total of 480 model fits. Note that the stereo fitting
approach is that proposed in [5].

Figures 3 and 4 exemplify the differences between the fits obtained using stereo (first
two terms of E) and stereo+texture (E). At first glance, the results in Fig. 3 suggest
that the shape estimates using both methods are quite similar. The stereo matching

cost (∑k|vk∈V
||I1(P1sk)−I2(P2sk)||2

|V | ) was computed to be 280.77 for the stereo method and
340.17 for the stereo+texture method, so the shape obtained using only the stereo term
is better in terms of the per-vertex stereo intensity match. However, from Fig. 4 it is
clear that the eye, eyebrow and mouth alignment between the model and the images is
significantly more accurate when the texture model is included.

These results suggest that either approach may be sufficient if the desired output is
a depth map or 3D model for image synthesis. For recognition, however, where one
links shape parameters to identity, it is important for features in the fitted model to be
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Fig. 3. Comparison of a fit using both stereo and texture to that obtained using stereo alone. Rows
indicate left and right images of the stereo pair. First column: shape estimate using stereo, second
column: input images, third column: shape estimate using stereo and texture.

Fig. 4. Same comparison as that in Fig. 3, but mapped with estimated textures and rendered
semi-transparently over input images. While both the shape obtained using stereo (top) and that
obtained using stereo and texture (bottom) provide reasonable depth maps for the input stereo
pair (Fig. 3), only the joint use of stereo and texture ensures feature alignment.

aligned with the features in the database models. Our experiments suggest that one way
to ensure this alignment is to include a texture model in the fitting procedure.

The same effect can be observed by studying the distribution of the 480 recovered
shape models (60 individuals under 8 poses) in the forty-dimensional whitened shape
parameter space. Two statistics relate to the quality of the fitting procedure from a recog-
nition standpoint. First, for a single individual, we would like the difference between
the fits for different poses to be small. Second, we would like the difference between the
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Fig. 5. Models are fit to an input stereo pair (top row) using robust stereo (left columns) and
robust stereo and texture (right columns). Here, the face is half-occluded (occluder type HO)
by a textureless object. The results from the two methods are very similar, showing that the
stereo match term alone suffices for detecting the occluder. The bottom row shows the estimated
occlusion map with black indicating foreign-body occlusion (O(k) = 1), white indicating visible
vertices (O(k) = 0 and vk ∈ V ), and red indicating self-occlusion (vk �∈ V ).

fits for distinct individuals to be large. These can be measured based on the within-class
(within-subject) scatter matrix (Sw) and the between-class scatter matrix (Sb). Roughly
speaking, the larger the determinant and trace of (S−1

w Sb) are, the more accurate a classi-
fier based on these fits will be. Using results from the 480 fits we found the determinants
of S−1

w Sb to be 2.9640e−5 and 1.3418e−11 and the traces of S−1
w Sb to be 104.0478 and

69.4101 for the stereo+texture method and the stereo method, respectively. These quan-
titative results support the qualitative observations in Figs. 3 and 4 and suggest that fits
obtained with the inclusion of the texture model are significantly more robust to pose
changes.

4.2 Accuracy with Occlusions

We also tested the occlusion cases described in Sect. 3.3 by applying the robust fitting
process to captured data. For these fitting results, a value of no = 250 was used for the
robust stereo method, and a value of no = 800 was used for the robust stereo+texture
method.

Figure 5 shows results obtained using the robust stereo and robust stereo+texture
method in the case of half-occlusion (case HO) by a textureless foreign body. As de-
scribed in Sect. 3.3, in this case we expect the results for both methods to be similar
because the stereo cue is sufficient to detect the occluder. As shown in the figure, this
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Fig. 6. Same as in Fig. 5, but for the case of a textured foreign-body occluder that is close to
the face (occluder of type FOn). In this case, as evidenced by the occlusion map on the bottom
left, the stereo match term alone is not enough to detect the occluder, and the recovered model is
inaccurate. Including the texture model (bottom right) significantly improves the result.

Fig. 7. Comparison of the shapes recovered using robust stereo (first row) and robust stereo
and texture (second row) in cases of (from left to right) no occlusion, half-occlusion, and full-
occlusion-near. Here, the estimates are overlayed on top of one of their input images. While stereo
handles the half occlusion case reasonably well, only combined use of stereo and texture ensures
that the recovered model is close to the ‘ground truth’ shape—at least in its visible regions—in
both occlusion cases.
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is indeed the case. Notice that the occlusion map captures not only the occluder, but
also artifacts that are not predicted by the model, including specular highlights and cast
shadows.

Figure 6 shows similar results for the case of a textured occluder that is close to the
surface (case FOn). In this case, the stereo constraint is insufficient for detecting the
occluder, and the addition of a texture term provides substantial improvement.

The results from the two occlusion cases are compared to the ‘ground truth’ shape
obtained in the absence of occlusion in Fig. 7. The results obtained by the robust
stereo+texture method are relatively consistent over all cases, but the same cannot be
said for those obtained using the stereo match alone. Notice that in all cases, the recov-
ered models deviate from the unoccluded model in the unobserved regions of the face.
This is to be expected, since there is no shape or texture information available in these
regions.

5 Conclusions

We have presented a method for the recovery of face models from stereo pairs of images
in the presence of foreign-body occlusions. In this approach, a face model (a 3DMM)
is augmented by an occlusion map defined on the model shape, and foreign-body oc-
clusions are detected efficiently using robust estimators. The approach uses an explicit
model for texture in addition to shape in an energy-based stereo fitting process.

Experimental results demonstrate robustness to occlusions, and they highlight the
relative importance of the stereo match term and the texture match term in the energy.
They suggest that both shape and texture components of a 3DMM should be incorpo-
rated if one seeks to detect general classes of occluders. The results also suggest that
even in the absence of foreign-body occlusions, an explicit texture model can signifi-
cantly improve stereo fitting results. The texture model provides one way of ensuring
proper alignment of features (eyes, eyebrows, lips, etc) in the fitted model.

Another possible approach to achieve alignment, and one we plan to explore in the
future, is to use only shape in the stereo fitting process and to incorporate a stereo
matching term that is more sophisticated than simple per-vertex intensity differences.
This is the approach taken in [19], for example, where window-based matching is em-
ployed. One may also look at other feature spaces for fitting (e.g. [20]), as well as better
models for the distribution of the error in the modeling of texture (Eq. 5).

Finally, if one is to perform recognition based on models obtained in the presence of
occlusions, one would likely want a second model refinement step in which one breaks
the initial model into segments [6] in a way that respects the occlusion boundaries. The
goal would then be to infer identity using only the unoccluded segments of the model.
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Abstract. We propose a novel method for 3D head reconstruction and
view-invariant recognition from single 2D images. We employ a deter-
ministic Shape From Shading (SFS) method with initial conditions esti-
mated by Hybrid Principal Component Analysis (HPCA) and multi-level
global optimization with error-dependent smoothness and integrability
constraints. Our HPCA algorithm provides initial estimates of 3D range
mapping for the SFS optimization, which is quite accurate and yields
much improved 3D head reconstruction. The paper also includes signif-
icant contributions in novel approaches to global optimization and in
SFS handling of variable and unknown surface albedo, a problem with
unsatisfactory solutions by prevalent SFS methods. In the experiments,
we reconstruct 3D head range images from 2D single images in different
views. The 3D reconstructions are then used to recognize stored model
persons. Empirical results show that our HPCA based SFS method pro-
vides 3D head reconstructions that notably improve the accuracy com-
pared to other approaches. 3D reconstructions derived from side view
(profile) images of 40 persons are tested against 80 3D head models and
a recognition rate of over 90% is achieved. Such a capability was not
demonstrated by any other method we are aware of.

Keywords: 3D face reconstruction, face recognition, Hybrid PCA, Shape
From Shading, Optimization.

1 Introduction

3D face reconstruction from one or multiple 2D face images is an interesting
topic that receives a lot of attention. Blanz and Vetter proposed a morphable
model for 3D faces reconstruction using an analysis-by-synthesis approach in [4]
and later developed a face recognition method in [5], which is based on matching
eigenvector coefficients. Jiang et al. [10] used detected face features to determine
coefficients for synthesis from shape eigenvectors. Hu et al. [8] utilized a generic
3D face model and detected face features to reconstruct 3D faces with the help
of a Shape From Shading (SFS) method and Radial Basis Functions (RBFs).
The last two methods reconstruct faces only from frontal face images. In addi-
tion, surface albedo was assumed constant in [8], which led to inaccurate height
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on some feature points. Smith and Hancock [13] used an image normalization
algorithm to decouple surface normal directions from variable surface albedo. Il-
lumination cones and a Point Distribution Model were employed in a geometric
SFS method to refine estimated normals. However, the overall performance of
this method is determined by the accuracy of the normalization process. As we
can see from above, pose and variable albedo are major concerns in 3D face recon-
struction. We propose in this paper a novel method for 3D head reconstruction
by SFS which addresses these concerns. Our method reconstructs facial range
images from 2D face images in any pose. Furthermore, our approach provides
the capability to estimate variable surface albedo. Whereas, such a capability is
absent in most of the prevalent SFS methods.

Research on SFS has been conducted for decades. Ikeuchi and Horn [9] pro-
posed to recover shape information by minimizing a cost function. The stereo-
graphic plane was employed in their method to express orientations of surface
patches. In [7], Horn and Brooks applied the calculus of variations to solve
SFS problems. Zheng and Chellappa [17] proposed to estimate illumination di-
rection, albedo, and surface shape by minimizing a cost function with a new
smoothness constraint, which was aimed at decreasing the gradient difference
between the reconstructed intensity image and the input image. Worthington
and Hancock [15] replaced estimated normals with the closest normalized vector
on illumination cones to ensure accuracy of recovered surface normals. Samaras
and Metaxas [11] incorporated illumination constraints with deformable mod-
els in resolving SFS problems. Crouzil et al. [6] developed a multiresolution SFS
method, in which cost functions were minimized by fuzing deterministic and sto-
chastic minimization approaches. During the examination of these SFS methods,
we find that surface albedo was assumed either constant or given. Assuming con-
stant albedo results in inaccurate reconstruction of surfaces with variable albedo
as was demonstrated by the experiments in [16].

Existing SFS methods almost always yield unsatisfactory results when applied
to realistic imagery when the initial estimation of the true surface is unavailable
or inaccurate. In experiments described in this paper, we demonstrate that pro-
viding an accurate initial estimation in SFS methods yields much better results.
The Hybrid Principal Component Analysis algorithm provides head surface es-
timations which are quite accurate. These estimations serve as initial conditions
for our multiple-level optimization. The introduction of HPCA and the multiple-
level global optimization combined with albedo estimation, are the innovative
parts of our approach.

The rest of the paper is arranged as follows: The HPCA algorithm is described
in section 2; In section 3, we present results from HPCA; section 4 describes the
SFS method; section 5 presents SFS results; section 6 concludes the paper.

2 Hybrid Principle Component Analysis

In this section, we describe the HPCA algorithm. To perform the HPCA algo-
rithm, we need a set of M training images. Each image is a hybrid composed of
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a 2D [n × m] gray scale image and a corresponding [n × m] range image. These
training images are lexicographically reordered into M pairs of vectors, denoted
by

{−→
fi , −→ri } i = 1, 2, · · · , M (1)

where −→
fi is the vector that represents the ith gray scale image and −→ri is the

vector that represents the corresponding range image. These two vectors are
concatenated to generate a 2nm dimensional hybrid vector −→

hi ,

−→
hi =

(−→
fi

T
, −→ri

T
)T

(2)

The training set H for HPCA consists of all the M hybrid vectors −→
hi . The mean

vector −→μh and covariance matrix Ch for H are calculated as follows

−→μh =
1
M

M∑

i=1

−→
hi (3)

Ch =
1
M

M∑

i=1

(−→hi − −→μh)(−→hi − −→μh)T (4)

Next, the eigenvectors {−→vj ; j = 1, 2, · · · , ω} for Ch are computed. ω ≤ 2nm is
the rank of Ch. The first P eigenvectors, which correspond to the P largest
eigenvalues, are taken as the principal eigenvectors. Every eigenvector −→vj is then
split into two sub-vectors with nm dimensions each. We name the two sub-vectors
as the top vector −→

tj and the bottom vector −→
bj respectively, i.e.

−→vj =
(

−→
tj

T
,
−→
bj

T
)T −→

tj ∈ Rnm,
−→
bj ∈ Rnm (5)

The vector set {−→
tj } corresponds to the gray scale images while the set {−→

bj }
corresponds to the range images. Similarly, the mean vector −→μh is split into two
sub-vectors as well.

−→μh =
(−→μf

T , −→μr
T

)T
(6)

We also perform PCA on the set of range images {−→ri ; i = 1, 2, · · · , M} and
obtain P principal eigenvectors {−→ej ; j = 1, 2, · · · , P} for the range image space
Sr ∈ Rnm. Obviously, The set {−→ej} for Sr would be different from the set {−→

bj }
for the hybrid space. However, we can approximate {−→ej} with {−→

bj } , i.e., we use
{−→
bj } as an estimation of the principal eigenvectors for the range image space Sr.

As shown in the experiments, this approximation is pretty accurate. Similarly,
we use {−→

tj } as an estimation of the principal eigenvectors of the gray scale image
space Sg ∈ Rnm.

The underlying principle of HPCA is that a range image −→r can be approx-
imated by a linear combination of the set {−→

bj } using the projection coeffi-
cients obtained by projecting the corresponding gray scale image −→

f onto the
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a b

Fig. 1. (a) 3 pairs of training images (Top row - Range images; Bottom row - Corre-
sponding gray scale images); (b) A test image

set {−→
tj } ∈ Sg, namely

−→
f = T

−→
d + −→μf (7)

=⇒ −→
d = (T T T )−1T T (−→f − −→μf ) (8)

=⇒ −→r = B
−→
d + −→μr (9)

where T = (−→t1 −→
t2 · · · −→tω), B = (−→b1

−→
b2 · · · −→bω) and −→

d is the coefficient vector.

3 Experimental Results for HPCA

To achieve reconstruction of heads in different poses, we need a set of gray scale
images and range images taken in intervals of few degrees about the vertical axes
of the heads. For this purpose, we synthesize the gray scale images from a 3D
head model library provided by USF [1]. A few synthetic gray scale images are
illustrated in Fig. 1. These synthetic images still look realistic since the variable
albedo is taken also into account.

The library from USF includes 100 3D head models and corresponding texture
maps. We use 40 head models in the experiment. Every model is rotated about
the vertical axis from -90 to +90 degrees in a step size of 5 degrees. A gray
scale image and a range image are generated for every pose, which leads to 1480
hybrids for all 40 models. Few pairs of training images are illustrated in Fig. 1.

It is straightforward to obtain model range images while it is more difficult
to obtain model gray scale images. Here we need to make two assumptions:

1. Head surfaces exhibit Lambertian reflectance.
2. The light is perpendicular to the image plane.
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With these two assumptions, the gray scale value at a point A can be calculated
as

RA = ρα(−→l · −→n ) = u(−→l · −→n ) (10)

where ρ is the illuminant strength, α is the surface albedo, u is the composite
albedo [17] representing the product of ρ and α, −→

l = (0, 0, 1)T represents the
illuminant direction, and −→n is the normalized surface normal at point A.

−→n =
1√

1 + p2 + q2
× (−p, −q, 1)T (11)

p and q are the surface derivatives along x and y axes respectively. Substitute
Eq.11 into Eq.10, we get

RA =
ρα√

1 + p2 + q2
=

u√
1 + p2 + q2

(12)

ρ = 1 is used in our experiment. As for the surface albedo α, note that there
is a texture map for every model in the library from USF. We map the texture
to the 3D model and take the normalized gray scale value at every point as its
albedo. The gray scale images for testing are obtained in a similar manner from
3D head models which are not included in the training. A test image is shown in
Fig.1b. Two views of the corresponding original range image are shown in Fig.2a
and 2d. The range image reconstructed by HPCA is illustrated in Fig.2b and 2e.
As can be observed, the reconstruction is close to the original range image.

a b c 

d e f 

Fig. 2. (a)&(d) The original range image in x-y and 3D view; (b)&(e) The recon-
structed range image from HPCA in x-y and 3D view. This reconstruction serves as
initial estimation for the optimization algorithm; (c)&(f) Are the x-y and 3D view of
the final reconstruction after applying the SFS optimization.
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4 Shape from Shading Reconstruction

Starting from the initial reconstruction provided by HPCA, we further improve
the reconstruction using a novel SFS method. SFS is usually modeled as an
optimization problem [16], in which cost functions are minimized subject to
various constraints. Existing methods either try to estimate the surface height
directly [14], or to divide the problem into two subproblems[6] [15] . First, to
compute the surface’s gradient field and then to calculate surface height from
the gradient field. Our method belongs to the second category.

Henceforth, we refer to the estimated 3D surface as z(x, y), where z is the
surface height and x, y are coordinates. The two components of the gradient
field are

p(x, y) = ∂z(x, y)/∂x q(x, y) = ∂z(x, y)/∂y (13)

We present the fundamental equation for SFS, Image Irradiance Equation [7],
as

I(x, y) = R(−→l , p(x, y), q(x, y)) (14)

where R and I are the reflectance map and the input gray scale image respec-
tively, and −→

l is the illuminant direction. The cost function shown below is
minimized to find the gradient field in image domain Ω.

C1(p, q) =
∫∫

Ω

[R(−→l , p(x, y), q(x, y)) − I(x, y)]2dxdy

=
∫∫

Ω

[
u(x, y)√

1 + p2(x, y) + q2(x, y)
− I(x, y)]2dxdy

(15)

To get a well-posed solution, an integrability constraint and a smoothness con-
straint are usually added [7] [6] and the augmented cost function is given below.

C2(p, q) = C1(p, q) + λi

∫∫

Ω

[py(x, y) − qx(x, y)]2dxdy

+ λs1

∫∫

Ω

[p2
x(x, y) + p2

y(x, y) + q2
x(x, y)

+ q2
y(x, y)]dxdy (16)

where λi is the integrability factor and λs1 is the smoothing factor. Both factors
are set to positive values. The second and the third terms on the right-hand side
represent the integrability constraint and the smoothness constraint respectively.

To handle the variable albedo of faces, we add to C2(p, q) a smoothness con-
straint for the composite albedo u and estimate the gradient field and u simul-
taneously. The new constraint for u is inspired by the observation that abrupt
changes of albedo usually only occur on boundaries between special face regions
(e.g. lips, eyebrows, eyes or pigmentation). Other than that, the albedo usually
varies smoothly, especially on cheeks and foreheads. As a matter of fact, even
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albedo inside some special regions, e.g. lips, doesn’t vary abruptly. As for illu-
minant strength, in most cases it remains constant or varies smoothly on faces.
Therefore, u should also vary smoothly on most face regions. Hence, imposing
a smoothness constraint on u is justified almost everywhere. The cost function
with the new constraint is

C = C2(p, q) + λs2

∫∫

Ω

[u2
x(x, y) + u2

y(x, y)]dxdy (17)

where λs2 is the smoothing factor for u.
Next we will convert the cost function into discrete form. Hereafter we will

use subscripts to indicate the coordinates of pixels. We apply either forward or
backward finite differences in the conversion. Without loss of generality, we will
discuss the case where forward finite differences are applied. According to the
definition of forward finite differences, we have

px|(i,j) = p(i, j + 1) − p(i, j) = pi,j+1 − pi,j (18)
py|(i,j) = p(i + 1, j) − p(i, j) = pi+1,j − pi,j (19)

Hence, Eq.17 changes into
C =

∑

(i,j)∈Φ

ci,j (20)

where Φ is the discrete image domain and ci,j is the cost component for the pixel
at (i, j) given by:

ci,j = [
ui,j√

1 + p2
i,j + q2

i,j

− Ii,j ]2

+ λi[(pi+1,j − pi,j) − (qi,j+1 − qi,j)]2

+ λs1[(pi+1,j − pi,j)2 + (pi,j+1 − pi,j)2

+ (qi+1,j − qi,j)2 + (qi,j+1 − qi,j)2]
+ λs2[(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2]

(21)

To minimize the cost function C with respect to (pi,j , qi,j , ui,j) at every pixel
is very difficult if the image is large. Therefore, we choose to split a large image
into small patches and run the optimization patch by patch. We use 10 × 10
patches in our experiment. Starting from the lower right corner of the input
image, a window is moved row-wise from right to left, from bottom to top. The
window is moved by 5 pixels every time so that the patch in the window always
has a half overlapping with any neighboring patch. When the upper left corner
is reached, the window is moved in the other direction from left to right, from
top to bottom. In this way, the window is moved back-and-forth between the two
corners and the cost on every patch is minimized. The iteration is stopped when
the norm of the changes in the gradient field between two iterations is smaller
than a predefined threshold.
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We assume that the gradients on the global boundary of an image are zero.
when the window is moved from the lower right corner to the upper left corner,
the right and bottom boundary conditions of patches can be obtained from ei-
ther the image boundary conditions or from results of previous patches. That
allows us to impose these two boundary conditions during the optimization. As
explained in the appendix, we apply forward finite differences in this case to
simplify the calculation of the gradient for the cost function. when the window
is moved from the upper left corner to the lower right corner, the left and top
boundary conditions of patches are available instead. In this case, these two
boundary conditions are imposed and then backward finite differences are ap-
plied.

Direct minimization of the cost function is performed on those patches using
Nonlinear Polak-Ribière Conjugate Gradient method [12]. For every patch, we
specify the initial vector set for the optimization as

ν(0) = {ν
(0)
i,j } = {(p(0)

i,j , q
(0)
i,j , u

(0)
i,j )(i,j)∈Φ} (22)

where the gradient field (p(0)
i,j , q

(0)
i,j )(i,j)∈Φ is derived from the initial range image

provided by HPCA and u
(0)
i,j is set to zero, i.e. (u(0)

i,j = 0)(i,j)∈Φ. Before run-
ning the optimization, we smooth the gradient field using a smoothing filter. By
smoothing the gradient field, the cost function surface also becomes smoother.
If the smoothing is large enough, all the local minima are eliminated leaving
only the global minimum. Beginning with the smoothed ν(0) and an initial set
of constraint factors (λi, λs1, λs2), the Nonlinear Polak-Ribière Conjugate Gra-
dient method is carried out to find a minimum of the cost function and the
corresponding vector set ν(1). Next, the set of constraint factors are reduced by
a factor of 2 and a smaller smoothing filter is applied to smooth the gradient field
a bit less. When the optimization is repeated, we initiate it with the previous
minimum location, which is quite close to the true global minimum. Each itera-
tion, with less smoothing, achieves more accurate minimum location. After each
iteration, the constraint factors are reduced by half and the size of the smoothing
filter is reduced as well before being applied to the gradient field. The process is
stopped when the constraint factors fall below predefined thresholds. After that,
the factors are set to zero (no constraints are imposed) and a final iteration of
minimization is carried out on each pixel individually. No smoothing filter is
applied in this iteration as well. Removing constraints allows the gradient field
and the composite albedo to vary more freely to account for abrupt changes on
the face.

Evidently, patches on faces have different smoothness. Another advantage of
our patch-by-patch method is that different initial constraint factors can be ap-
plied to handle different smoothness. The smoothness can be roughly estimated
from the range ξ and the standard deviation σ of the gray scale values in a
patch, which is taken from the normalized input image. The smaller ξ and σ,
the smoother the patch is. Therefore, large factors are used if ξ and σ are small.
On the other hand, smaller factors are used if ξ and σ are large.
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The Nonlinear Polak-Ribière Conjugate Gradient method is outlined as fol-
lows [12]:

1. g(0) = s(0) = −∇C(ν(0)) where ∇C(ν(0)) is the gradient of the cost function
at the vector set ν(0). Details on gradient calculation can be found in the
appendix.

2. Perform line search to find a value γ(m) that minimizes C(ν(m) + γ(m)g(m))
using the Secant method. ν(m) is the vector set at iteration m(m = 0, 1, 2, · · ·)

3. ν(m+1) = ν(m) + γ(m)g(m)

4. s(m+1) = −∇C(ν(m+1))
5. δ(m+1) = max{ (s(m+1))T (s(m+1)−s(m))

(s(m))T s(m) , 0}
6. g(m+1) = s(m+1) + δ(m+1)g(m)

The error minimization is stopped when ‖g(m+1)‖ falls below a predefined thresh-
old.

After the gradient field is estimated, we calculate the final surface using the
M-estimators algorithm [2].

5 Experimental Results

Results after SFS optimization are shown in Fig.2c and Fig.2f. Compared to the
HPCA results, we can see that details on the face are improved and noise is
reduced significantly. In addition, we can also observe that the reconstruction is
very close to the original range image. Another example that is reconstructed
from a frontal view image is illustrated in Fig.3.

To verify the reconstruction accuracy, we further use the reconstructions in
face recognition experiments, in which the reconstructed range images are tested
against 3D head models. 40 profile images are synthesized from 40 new 3D head
models that are not included in the training. Reconstructions are obtained for
those images and tested against the 40 new models plus those used in training.
The subject for a reconstructed range image is recognized by a recognition pro-
gram based on the Iterative Closest Point algorithm [3]. 37 out of 40 test images
are recognized correctly. The recognition rate is 92%, which is satisfactory for
such a hard task, in which 2D images are tested against 3D models. The good

a b c 

Fig. 3. (a) The test image; (b)The original range image; (c) Reconstruction after SFS
optimization
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performance on recognition demonstrates the accuracy of our reconstruction
method as well.

6 Conclusions

We describe in this paper a novel method for 3D head reconstruction and view-
invariant recognition, which is based on Shape From Shading (SFS) combined
with Hybrid Principal Component Analysis (HPCA). Our HPCA algorithm pro-
vides initial estimates of 3D range mapping for the SFS optimization, which is
quite accurate and yields much improved 3D head reconstruction. We also em-
ploy in the SFS method a novel multi-level global optimization approach with
error-dependent smoothness and integrability constraints. Additional contribu-
tion of our paper is the successful handling of variable and unknown surface
albedo in SFS. Experimental results show that our HPCA based SFS method
provides accurate 3D head reconstructions and high recognition rates. Our work
could have many practical applications such as person recognition from side
views when only frontal views are available for modeling.
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Appendix: Gradient Calculation for the Cost Function in
Eq.20

Here we demonstrate how to calculate the gradient of the cost function C in
Eq.20 with respect to variables pi,j , qi,j , ui,j for (i, j) ∈ Φ. We limit our discussion
here to patches with the right and bottom boundary conditions imposed. Similar
derivation can be developed for patches when top and left boundary conditions
are imposed. Without loss of generality, we will demonstrate the calculation
of the derivative with respect to pi,j . Due to the application of forward finite
differences, there are 4 different cases for pixels in a N × N patch.

1. For pixels (i, j) where i, j �= 1, N : from Eq.18 and 19, we know that pi,j is
involved in the derivative approximation at and only at these 3 locations:
(i, j), (i − 1, j), (i, j − 1). For example, at (i − 1, j),
py|(i−1,j) = pi,j − pi−1,j

Hence, ∂C
∂pi,j

= ∂ci,j

∂pi,j
+ ∂ci−1,j

∂pi,j
+ ∂ci,j−1

∂pi,j

2. For the pixel (1, 1): ∂C
∂p1,1

= ∂c1,1
∂p1,1

3. For pixels (i, j) where i = 1 and j �= 1, N :
∂C

∂pi,j
= ∂ci,j

∂pi,j
+ ∂ci,j−1

∂pi,j

4. For pixels (i, j) where i �= 1, N and j = 1:
∂C

∂pi,j
= ∂ci,j

∂pi,j
+ ∂ci−1,j

∂pi,j

Here we will explain why we use forward finite differences when the right and
bottom boundary conditions are imposed. Let us take a look at a pixel (i, j)
on the left boundary of a patch This pixel doesn’t have a neighboring pixel
(i, j − 1) on the left. As a result, derivatives along the horizontal direction can’t
be calculated if backward finite differences are applied. However, forward finite
differences doesn’t pose such a problem in this case and therefore are employed.
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The calculation of ∂ci,j

∂pi,j
, ∂ci−1,j

∂pi,j
, and ∂ci,j−1

∂pi,j
is straightforward. Only the cal-

culation of ∂ci−1,j

∂pi,j
is presented for demonstration.

ci−1,j = [
ui−1,j√

1 + p2
i−1,j + q2

i−1,j

− Ii−1,j ]2

+ λi[(pi,j − pi−1,j) − (qi−1,j+1 − qi−1,j)]2

+ λs1[(pi−1,j+1 − pi−1,j)2 + (pi,j − pi−1,j)2

+ (qi−1,j+1 − qi−1,j)2 + (qi,j − qi−1,j)2]
+ λs2[(ui−1,j+1 − ui−1,j)2 + (ui,j − ui−1,j)2]

(23)
∂ci−1,j

∂pi,j
= 2λi[(pi,j − pi−1,j) − (qi−1,j+1 − qi−1,j)]

+ 2λs1[pi,j − pi−1,j ] (24)
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Abstract. In tracking face and facial actions of unknown people, it is essential
to take into account two components of facial shape variations: shape variation
between people and variation caused by different facial actions such as facial
expressions. This paper presents a monocular method of tracking faces and fa-
cial actions using a multilinear face model that treats interpersonal and intraper-
sonal shape variations separately. We created this method using a multilinear face
model by integrating two different frameworks: particle filter-based tracking for
time-dependent facial action and pose estimation and incremental bundle adjust-
ment for person-dependent shape estimation. This unique combination together
with multilinear face models is the key to tracking faces and facial actions of arbi-
trary people in real time with no pre-learned individual face models. Experiments
using real video sequences demonstrate the effectiveness of our method.

1 Introduction

Real-time face and facial action tracking is a key component of applications in various
fields including human-computer interactions, video surveillance, and intelligent trans-
port systems. Techniques suited to such applications must be able to estimate 3D face
poses and facial actions correctly using a single camera even when large facial shape
deformations due to different facial expressions are present. To be used practically, the
techniques must be able to work with arbitrary people without preliminary preparations,
e.g., building a face model for each person. The aim of this study is to develop a novel
tracking technique that satisfies these two requirements. Therefore, we have developed
a person-independent monocular tracking technique for face and facial actions.

Many model-based methods have been proposed for face and facial action tracking
[1,2,3,4,5]. Using a linear face model typically obtained by principal component analy-
sis (PCA), these methods estimate the pose and coefficients of deformation bases of a
face. However, most previous methods [1,2,4,5] used face models that were created for
each person before estimation. Requiring preparation of person-specific face models is
often too restrictive for practical applications. In order to use person-specific models
without preliminary model preparation, Oka et al. proposed a multi-view method for
simultaneously modeling faces and estimating motion [3]. However, their method was
still too costly in terms of system installation, using multiple cameras that need to be
accurately calibrated beforehand.
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Meanwhile, another approach can be taken using a generic face model that repre-
sents facial shape deformation across multiple people with one parameter set [6,7].
Gross et al. presented an interesting empirical study on performance comparison be-
tween generic and person-specific models that were not 3D models but 2D active ap-
pearance models [6]. It was reported that the use of generic models often resulted in a
much worse rate of convergence in model parameter estimation. Especially in the case
of 3D models, generic models inescapably contain a deformation factor that normally
does not happen for a single person, such as scaling. These factors are hard to distin-
guish from the head pose, thus decreasing the tracking accuracy. Zhu et al. [7] used
an AAM-based generic face model to estimate 3D head pose and facial actions in real
time. However, no quantitative evaluation was performed on their head pose estimation
result.

To cope with this problem, some methods used 3D face models with two separate
sets of parameters (a set of shape parameters for interpersonal deformation and a set
of action parameters for intrapersonal deformation). The use of such models limits
the required number of parameters for each set without degrading the expressiveness
of the model. In addition, these two sets of parameters with different behavior can be
treated separately. Dornaika et al. used a model with separate sets of parameters in
real-time face tracking [8]. Their method estimates time-dependent action parameters
sequentially. However, shape parameters for person-dependent facial shape variations
are set manually, and their method does not adjust shape parameters during the tracking
process. Vlasic et al. [9] used a multilinear face model that describes interpersonal and
intrapersonal deformations separately. However, the purpose of their method was to
capture facial expression from a video segment, so it is not clear how their method can
be extended to real-time estimation. DeCarlo et al. [10] used tracking residuals from
model-based optical flow to adjust all of the parameters, including shape parameters.
However, their method was computationally too costly to be executed in real time.

As stated above, there is no method which is capable of estimating both shape and ac-
tion parameters in real-time. In contrast, our method executes shape adjustment simul-
taneously with real-time non-rigid head pose tracking, by using a model-based bundle
adjustment with a multilinear face model.

As shown in Fig. 1, our method consists of two steps. The first step, called the Esti-
mation Step, estimates action parameters, i.e., intrapersonal deformation, as well as the
person’s 3D head pose for each input frame by using a particle filter. It also finds cor-
rect 2D positions of facial feature points in the image. This step enables a head pose and
facial action tracking that is robust to partial occlusion or depth-directional movement.

The second step, called the Modeling Step, incrementally refines shape parameters,
i.e., interpersonal deformation, by model-based bundle adjustment based on 2D facial
feature positions obtained from the Estimation Step. This step enables a stable adjust-
ment of shape parameters that includes factors indistinguishable from head pose. Up-
dated shape parameters are then used in the succeeding Estimation Step. In this way,
our method enables progressive refinement of the estimation accuracy and personal
customization of the face model.

This unique combination of particle filter-based tracking and incremental bundle
adjustment enables monocular estimation of non-rigid 3D facial motion without
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Fig. 1. System overview

preliminary learning of face models tailored for each person. As far as we know, this is
the first research to propose a method using this approach.

The rest of this paper is organized as follows. In Section 2, we begin by describing
how multi-linear facial models with separate parameter sets are constructed prior to
tracking. Then we describe the two steps in our method; the Modeling Step in Section 3
and the Estimation Step in Section 4. We present our experimental results in Section 5.
Finally, we present concluding remarks in Section 6.

2 Preliminary Construction of Multilinear Face Models

In this section, we describe how a multilinear face model with shape and action para-
meters is prepared by using N-mode singular value decomposition (SVD) [9] prior to
tracking.

A person’s face is represented in terms of its shape and appearance. More specifi-
cally, the face’s shape is represented as a 3K-dimensional shape vector M composed
of 3D coordinates of K feature points1. These are defined in the local coordinate system
fixed to the person’s head. The appearance of the face is modeled as appearances of the
feature points, which are registered as image templates automatically at the beginning
of each tracking.

A multilinear face model that represents facial shapes is built from a data tensor T
that varies with people’s identity and facial expressions (Fig. 3). The first mode (noted

1 In this study, K is set to 10. Those feature points are the inner and outer corners of both eyes,
both corners of the mouth, both nostrils, and the inner corner of both brows (indicated with
plus signs in Fig. 2).
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Fig. 2. Example of facial deformation Fig. 3. Data tensor

as feature points in the figure) corresponds to each shape vector M , while the sec-
ond (shape) and the third (action) modes correspond to identity and facial expression,
respectively. The data is arranged so that shape vectors of the same person making dif-
ferent facial expressions are aligned in a slice along the second mode, and shape vectors
of different persons making the same expressions are aligned in a slice along the third
mode. Based on N-mode SVD, the data tensor T is expressed as a mode product of an
orthonormal matrix Ui of the ith mode and a core tensor C :

T = C ×feature Ufeature ×shape Ushape ×action Uaction
= M ×shape Ushape ×action Uaction, (1)

where the model tensor M contains basis vectors of the 3K-dimensional face vector
space. Moreover, an approximated representation of T is obtained with the truncated
basis of action and shape spaces:

T ≈ M ×shape Ǔshape ×action Ǔaction. (2)

Using this approximated model tensor, we can generate an arbitrary face vector M
using shape and action parameters defined as coefficient vectors of M .

To construct the data tensor T , we first need to prepare shape vectors for different
persons moving their faces in different ways. In this study, we used a multiview-based
face and facial action tracking technique [3] to obtain shape vectors. While K facial
features were being automatically tracked, S people were asked to move their faces in 2
different ways: horizontally move the corners of their mouth, and vertically move their
mouths and eyebrows. Then, 5 intermediate facial shapes were chosen for each facial
action (from beginning to completion of the action) for a total of A = 10 shape vectors
for each person.

This gives us S × A samples of face shape. After calculating and subtracting mean
shape M̄ , we construct a data tensor T ∈ R

3K×S×A. By calculating the model tensor
M with approximated shape (S → S′) and action (A → A′) spaces as Eq. (2), we
can describe an arbitrary face vector M using a shape parameter s ∈ R

S′
, an action

parameter a ∈ R
A′

and the mean shape M̄ :

M = M̄ + M ×shape sT ×action aT. (3)
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Here, each row of Ǔshape = (š1, . . . , šS)T and Ǔaction = (ǎ1, . . . , ǎA)T in Eq.
(2) is a parameter vector corresponding to each of the A×S data. We calculate the mean
vector s̄ and the vector σs composed of standard deviations of elements of {ši}, and the
mean vector ā and the vector σa composed of standard deviations of elements of {ǎi}.
These four vectors are later used to determine the constraint of a bundle adjustment
(Section 3), and the diffusion and weighting process of a particle filter (Section 4).

This model enables us to describe any facial state of any person with a person-
dependent shape vector s, a time-dependent action vector a and a head pose vector
p defined as a translation and a rotation from the world coordinate system to the model
coordinate system. In the following sections, we explain the details of our real-time face
and facial action tracking method using this face model.

3 Modeling Step: Estimation of Interpersonal Shape Variations

In this section, we describe the Modeling Step of our method of incrementally adjusting
shape parameter vector s, which represents interpersonal facial shape variation, using
model-based bundle adjustment.

Bundle adjustment is a maximum likelihood estimation method that optimizes pa-
rameters in 3D space by minimizing the 2D reprojection error in multiple images. In
the context of facial shape estimation, it is used to model rigid faces [11], estimate
rigid head motions in real time [12], and adjust the shapes of deformable face models
acquired from a non-rigid factorization method [13].

In this research, we used model-based bundle adjustment to incrementally adjust the
shape parameter vector s of a multilinear face model. We introduce two modifications
to stabilize estimation of shape parameters. One is an incremental construction of an
adjustment frame set based on the result from the Estimation Step with a particle filter.
The other is the use of parameter constraints determined on the basis of the distribution
of the shape parameter and estimated pose and action parameters. We first explain how
to choose a set of observation frames and then explain model-based bundle adjustment
with parameter constraints.

3.1 Incremental Construction of the Bundle Adjustment Frame Set

Using the face model presented in Section 2, the bundle adjustment problem is formu-
lated as follows. First, we calculate the face shape vector Mt from Eq. (3). Then K
feature points in shape vector Mt are projected onto the image plane as:

mt = P(pt, Mt(at, s)), (4)

where P is a projection function given by camera parameters that are obtained prior
to tracking, and mt is a 2K-dimensional vector that consists of 2D coordinates of K
projected feature points.

Let m̂t be a vector that represents the true 2D coordinates of K feature points.
This 2K-dimensional vector m̂t is obtained in the Estimation Step as explained later
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in Section 4.2. Finally, we can define an error function for the sum of the reprojection
errors over a set of observation frames as:

Ft =
∑

i∈ft

D(m̂i, mi(pi, ai, s))2, (5)

where ft means a set of n observation frames used in the bundle adjustment at time t,
as illustrated in Fig. 4.

Fig. 4. Flow of incremental bundle adjustment

Our method generates the frames of this frame set ft one at a time, by replacing one
frame of the previous set ft−1 with a new frame. For the new frame t, pose p′

t and action
a′

t estimated in the Estimation Step are assigned as initial values for the minimization
of Ft. Meanwhile, selected n − 1 frames are initialized from previous minimization
results of Ft−1 and adjusted on an ongoing basis.

Zhang et al. [14] used a similar approach of updating a set of observation frames by
replacing the oldest frame with a new incoming frame. However, it is often the case
in real-time tracking that object appearances do not change much between consecutive
frames, and, as a result, depth ambiguities cannot be resolved reliably with bundle ad-
justment. This problem is avoided in our method by maximizing the variation of poses
in the adjustment frame set. More specifically, we choose the frame set with the widest
pose variance at the initial state of the minimization, from among all n frame combina-
tions possible at the time. By repeating this selection scheme, the pose variation in the
frame set increases as the tracking proceeds.

3.2 Error Minimization with Parameter Constraints

Next, we describe in detail the minimization procedure of Ft (Eq. (5)) with parameter
constraints, which is meant to stabilize the adjustment process. Ft is minimized using a
Levenberg-Marquardt method under the parameter constraints [15]:

min
{pi},{ai},s

Ft , pi ∈ Cpi , ai ∈ Cai , s ∈ Cs, (6)

where Cpi , Cai and Cs denotes the constraints on each parameter.
As mentioned above, initial pose p̂t and action parameter ât for the minimiza-

tion are estimated almost exactly, based on the value obtained in the Estimation Step.
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Accordingly, tight constraints Cpi and Cai are imposed such that only small changes
are allowed in each iteration:

Cpi = {pi | p̂i − λp ≤ pi ≤ p̂i + λp}, (7)

where λp is a constant vector that denotes the adjustment range. The action constraint,
Cai , is set in the same way. Currently, λa and λp are determined empirically.

In contrast, a relatively weak constraint is imposed on shape parameter s based on
the vector of standard deviations σs from Section 2:

Cs = {s | s̄ − 2σs ≤ s ≤ s̄ + 2σs}. (8)

This allows shape parameters to be adjusted to the shape of the person’s face smoothly
while excessive shape deformations are prohibited.

Finally, the shape parameter s(t) for the next Estimation Step is calculated as the
mean of the estimation results up to the present time:

s(t) =
t − 1

t
s(t−1) +

1
t
s′, (9)

where s′ denotes the result of estimation at time t, calculated from the process men-
tioned above. Eq. (9) reduces the influence of short-term fluctuation in the adjustment.

4 Estimation Step: Estimation of Head Pose and Facial Actions

In this section we describe the Estimation Step (Fig. 1). It is important to note that time-
varying action and pose parameters cannot be estimated properly with the model-based
bundle adjustment process of the Modeling Step for several reasons. First, the estimation
result tends to jitter, especially in the depth direction. Second, 2D positions of feature
points required for the bundle adjustment cannot be obtained stably with simple 2D
tracking or detection. Last, if some of the feature points are not observed, the pose
and action parameters cannot be estimated correctly. To solve these problems, we use a
particle filter to estimate pose and action parameters based on a 3D model-based motion
prediction.

As shown in Fig. 1, the Estimation Step consists of two components: the Pose esti-
mation step, which estimates pose pt and action at, and the Feature-point finding step,
which calculates the true 2D positions of feature points m̂t which are used as the obser-
vation vector in Eq. (5) in the Modeling Step. In the following sections, we first explain
the Pose estimation step, and then explain the Feature-point finding step.

4.1 Head Pose Estimation Using Particle Filter

To estimate facial action, the multilinear model in Eq. (3) is rewritten as a linear defor-
mation model with the shape parameter s(t−1) calculated in the previous frame:

Mt = M̄ + Mtat (Mt = M ×shape sT
(t−1)). (10)
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Using this model, we estimate a (6 + A′) dimensional state vector xt = (pT
t , aT

t )T

at frame t. The sample set {(u(i)
t ; π(i)

t )} for the particle filter in our method consists

of N discrete samples u
(i)
t in the (6 + A′) dimensional state space and of associated

weights π
(i)
t .

To generate N new samples at each time t, we define a uniform linear motion model
as follows:

u
(i)
t = u′

t−1 + τvt−1 + ω, (11)

where u′
t−1 is a chosen sample from the previous sample set, τ is the interval between

frames, and vt−1 is the velocity of the state vector x calculated at the previous frame
t − 1. Note that the elements of vt−1 corresponding to the action parameter at are set
to 0, because at does not always match the assumption of uniform linear motion.

ω is a system noise that affects the diffusion property, and each element of ω is a
Gaussian noise with a zero mean and a uniquely defined variance. The elements corre-
sponding to the head pose are adaptively controlled depending on velocity [3]. Mean-
while, the standard deviation of the Gaussian noise for the other elements corresponding
to the action parameter is set to κσa based on the parameter distribution calculated in
Section 2. Here, κ is empirically set to 0.2.

Weight π
(i)
t of each sample u

(i)
t is calculated as:

π
(i)
t ∝ exp

(
−

(
K − N (u(i)

t )
)2

2σ2

)
· exp

(
−1

2

A′∑

b=1

(
a
(i)
t,b − āb

ςb

)2)
, (12)

where N (u(i)
t ) is a sum of the normalized correlation score for all K feature points

based on template image T , which has a value between −K and K . The first term of
Eq. (12) is a Gaussian function evaluating N (u(i)

t ), and the standard deviation σ is set
to 1.0. The second term is an evaluation function for the action parameter a

(i)
t , which

prevents excessive face deformation. Here, a
(i)
t,b, āb and ςb is the b-th element of a

(i)
t , ā

and σa, respectively.
After the calculation, each weight π

(i)
t is normalized so that the sum is equal to 1.

Eventually, the current state vector xt is computed as a weighted average of all samples.
Note that the initial state vector x0 is calculated from the bundle adjustment. After

a person’s face and K feature points are automatically detected over n frames (using
OKAO Vision library developed by OMRON Corporation), all parameters are initial-
ized by minimizing Eq. (6). In this case, we use predefined values as the start point of
the iteration: a head pose facing the center of the camera and mean parameters ā and s̄.

4.2 Finding True Feature Positions in Images

Next, we describe the Feature-point finding step in detail. The 2D positions m′
t of the

estimated feature points can be calculated from the estimated state vector xt and the
projection function P (Eq. 4). However, if the adjustment of the shape parameter is not
done properly, the estimated positions do not always correspond with the true positions
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Fig. 5. Finding true feature points

(as shown in Fig. 5). In this step, we find the true 2D positions m̂t around the estimated
positions m′

t.
We define the following energy function Et similar to the one used in Gokturk et al.

[1], and calculate the difference dm̂ = m̂t − m̂t−1 by successively minimizing it.

Et =
∑

ROI

{
ρ||Ît − Ît−1||2 + ||Ît − Î1||2

}
+ ε||m̂t − m′

t||2. (13)

The first term of Eq. (13) denotes the difference between the appearances of regions of
interest (ROIs) around the feature points. Ît ∈ R

K is an intensity vector corresponding
to m̂t, whose kth element is the intensity of the input image at the kth 2D position
of m̂t. We use both the difference from the previous image and the difference from
the first image, which [1] also uses. This avoids the problem of drift of the calculated
feature points. ρ is empirically set to 4, and the size of ROI is 16 × 16. In contrast, the
second term denotes the geometric difference between m′

t and m̂t. Using this term,
we find the true positions m̂t in the neighboring region of estimated positions m′

t. ε is
empirically set to 4000.

5 Experimental Results

We have conducted a number of experiments to evaluate the performance of our method.
First, we compared our method with the multiview-based tracking method [3]. In ad-
dition, to evaluate the effect of the use of the multilinear model and the bundle adjust-
ment, we made another comparison with the particle filter-based estimation result using
a generic PCA model with one parameter set.

The face model was built from S = 26 persons × A = 10 actions, and the resulting
model had S′ = 15 shape parameters and A′ = 5 action parameters. The generic model
was also built from the same data set using PCA, and had 20 deformation parameters.
Note that the target person in the experiment was not included among the 26 persons.

Table 1. Comparison of estimation errors

[mm] x y z [deg.] roll pitch yaw
Particle filter-based estimation using the generic PCA model

Mean 6.14 4.71 51.32 Mean 0.34 6.54 3.34
Std. Dev. 4.88 4.09 38.29 Std. Dev. 0.29 4.71 2.73
Our method using the multilinear model

Mean 3.26 4.37 20.18 Mean 0.41 3.12 2.33
Std. Dev. 2.62 2.83 11.18 Std. Dev. 0.27 2.49 1.98
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Fig. 6. Estimation results: x, y, and z are the horizontal, vertical, and depth-directional translation,
and roll, pitch, and yaw are the rotation around the z, y, and x axes, respectively. The bottom
graph shows the facial shape estimation error in the model coordinate system.
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Fig. 7. Result images: the right column shows actual estimation results of our method using the
multilinear model, and the center column shows results of the generic model-based method. The
left column shows these results rendered from a different viewpoint.

Our tracking system consisted of a Windows-based PC with Intel Core 2 Duo E6700.
We captured 60-second long (1800 frames) video sequences from two calibrated BW
cameras via IEEE-1394. The image resolution was 640 × 480, the size of image tem-
plates T was set to 16×16. A set of 1000 samples was used for particle filtering. n = 7
frames were used for the bundle adjustment. The initialization step, with 10 iterations of
LM minimization, took approximately 90 [ms], and the overall tracking process, with 5
iterations per frame, took approximately 32 [ms/frame].

Table 1 shows the estimation error of our method and the generic model-based
method. x, y, and z are the horizontal, vertical, and depth-directional translation, and
roll, pitch, and yaw are the rotation around the z, y, and x axes, respectively. Addition-
ally, Fig. 6 shows the detailed estimation results and the facial shape estimation error in
the model coordinate system. The difference between two monocular estimation meth-
ods is evident here. In Fig. 7, the right and center columns show actual images of the
estimation results, and the left column shows these results rendered from a different
viewpoint. The whole sequences can be seen on our website.2 These results demon-

2 http://www.hci.iis.u-tokyo.ac.jp/˜sugano/research/3d-face-tracking/
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strate that our method is more accurate than the method using the generic PCA model,
and favorably compares with stereo estimation.

6 Conclusion

In this work, we presented a person-independent monocular method for real-time 3D
face and facial action tracking. The key idea of our method is a unique combination
of i) particle filter-based tracking for time-dependent pose and facial action estima-
tion and ii) incremental model-based bundle adjustment for person-dependent shape
estimation, together with multilinear face models. To our knowledge, this is the first
work to achieve fully automatic 3D tracking of face and facial actions without prelimi-
nary training of person-specific face models. Our experimental results demonstrate that
our method performs significantly better than monocular tracking with a generic face
model, confirming the effectiveness of our real-time tracking method based on a multi-
linear face models. In our future work, we are planning to use our tracking method for
real-time facial expression analysis.
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Abstract. Over the last two decades automatic facial expression recog-
nition has become an active research area. Facial expressions are an im-
portant channel of non-verbal communication, and can provide cues to
emotions and intentions. This paper introduces a novel method for facial
expression recognition, by assembling contour fragments as discrimina-
tory classifiers and boosting them to form a strong accurate classifier.
Detection is fast as features are evaluated using an efficient lookup to
a chamfer image, which weights the response of the feature. An Ensem-
ble classification technique is presented using a voting scheme based on
classifiers responses. The results of this research are a 6-class classifier (6
basic expressions of anger, joy, sadness, surprise, disgust and fear) which
demonstrate competitive results achieving rates as high as 96% for some
expressions. As classifiers are extremely fast to compute the approach
operates at well above frame rate. We also demonstrate how a dedicated
classifier can be consrtucted to give optimal automatic parameter se-
lection of the detector, allowing real time operation on unconstrained
video.

1 Introduction

Our objective is to detect facial expressions in static images. This is a difficult
task due to the natural variation in appearance between individuals such as
ethnicity, age, facial hair and occlusion ( glasses and makeup ) and the effects
of pose, lighting and other environmental factors. Our approach relies upon a
boosted discriminatory classifier based upon contour information. Contours are
largely invariant to lighting and, as will be shown, provide an efficient discrimi-
natory classifier using chamfer matching.

Given a cartoon or line drawing of a face, it is taken for granted that the
human brain can recognize the expression or emotional state of the character.
Sufficient information must therefore be present in this simplified representation
for a computer to recognize key features associated with expressions. Using only
contour information provides important advantages as it offers some invariance
to lighting and reduces the complexity of the problem. Our approach relies upon
finding edges/contours on the face that are consistent across individuals for spe-
cific expressions. From a large set of facial images, candidate edges are extracted
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and a subset of consistent features selected using boosting. The final classifier is
then a set of weighted edge features which are matched to an image quickly using
chamfer-matching resulting in a binary classifier that detects specific emotions.

This paper is split into a number of sections, firstly a brief background of
research into automatic facial expression recognition is presented. Section 3 ex-
plains the methodology of this research. Section 4 evaluates different expression
classifiers and results. Real time implementation of this work is described in
section 5 where the work is adapted for robust, continuous use. Parameterisa-
tion is addressed through the use of a dedicated classifier for automatic selection.
Finally conclusions and future work are described in section 6.

2 Background

Automatic facial expression research has gained inertia over the last 20 years. Fur-
thermore, recent advances in the area of face recognition and tracking, coupled
with relatively inexpensive computational power has fueled recent endeavors.

Early work on Automatic Facial expression recognition by Ekman [8], intro-
duced the Facial Action Coding System (FACS). FACS provided a prototype of
the basic human expressions and allowed researchers to study facial expression
based on an anatomical analysis of facial movement. A movement of one or more
muscles in the face is called an action unit (AU) and all expressions can then be
described by a combination of one or more of 46 AU’s.

Feature extraction methods applied to facial expression recognition can be
categorized into two groups, deformation methods or motion extraction meth-
ods. Deformation methods applied to facial expression recognition include Gabor
wavelets [3] [6] [21], neural networks (intensity profiles) [1] and Active Appear-
ance Models [15]. Gabor wavelets have achieved very accurate results as they
are largely invariant to lighting changes and have been widely adopted in both
facial detection and recognition, but are computationally expensive to convolve
with an image. Motion extraction methods using optical flow [20] or difference
images [5] have also been applied to facial expression recognition. Essa and
Pentland [9] combined these approaches and demonstrated accurate recognition
using optic flow with deformable models. This work also introduced FACS+, an
extension of FACS into the temporal domain.

Expression recognition is closely related to face detection, and many ap-
proaches from detection (such as the Gabor methods previously mentioned) have
been applied to expression recognition. Since the popularization of boosting in
the vision community by Viola and Jones [17], this type of machine learning has
received considerable attention. In Adaboost, a strong classifier is built as a sim-
ple linear combination of seemingly very weak classifiers. Viola and Jones built
a fast and reliable face detector using Adaboost from simple, weak classifiers
based upon ‘haar wavelet like’ block differences [17]. It is arguably the current
state-of-the-art in face detection and has resulted in boosting being applied to
many computer vision problems with many variants to the learning algorithm
[13], [19]. Wang et al [18] extended this technique to facial expression recognition
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by building separate classifiers of ‘haar like’ features for each expression. Shan
and Gong [4] also applied boosting to facial expression recognition, but boosted
local binary patterns (LBP) using conditional mutual information based boost-
ing (CMIB). CMIB learns a sequence of weak classifiers that maximize their
mutual information.

Shotton and Blake [16] presented a categorical object detection scheme based
upon boosted local contour fragments. They demonstrate that the boundary con-
tour could be used efficiently for object detection. This paper shows how internal
contour features can be used for extremely fast discriminatory classification.

Fig. 1. System Overview

3 Methodology

3.1 Overview

In this section we introduce how the proposed approach works, illustrated in
figure 1. A training set of images is extracted from a FACS encoded database.
Images are annotated (eyes and tip of the nose) so that features can be trans-
formed to a reference co-ordinate system. Each image then undergoes edge de-
tection. From each edge image, small coherent edge fragments are extracted from
the area in and around the face. A classifier bank (figure 2) is then assembled
from candidate edge fragments from all the training examples. A weak classi-
fier is formed by assembling an edge fragment combined with a chamfer score.
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Boosting is then used to choose an optimal subset of features from the classi-
fier bank to form a strong discriminatory classifier. The final boosted classifier
provides a binary decision for object recognition. To build an n-class discrimi-
natory classifier we use probability distributions built from classifier responses
to allow likelihoods ratios to be used to compare across different classifiers. Also
an investigation of fusion methodologies, a one against-many classifier and an
ensemble classifier [7] are presented.

3.2 Image Alignment

To overcome the problem of image registration, each facial image must be trans-
formed into the same co-ordinate frame. Our initial tests are performed using a
3 point basis. However we will then proceed to demonstrate that position and
scale of a face (obtained via detection) is sufficient for classification with a min-
imal loss of accuracy. Before training, the images are manually annotated to
identify the two eyes and the tip of the nose, to form a 3-point basis (points are
non-collinear). Only near frontal faces are considered in this work and therefore
a 3-point basis is sufficient to align examples.

3.3 Weak Classifiers

Expressions are based on the movement of the muscles, but visually we distin-
guish expressions by how these features of the face deform.

The contour fragments e ∈ E, where E is the set of all edges, are considered
from the area around the face based on heuristics of the golden ratio of the face.
The distance between the eyes is approximately half the width of the face and
one third of the height. This identifies the region of interest (ROI) from which
contours will be considered. Following an edge detection, connected component
analysis is performed and from each resulting contour fragment, the contour is
sampled randomly to form short connected edge features. Figure 2 shows an
example of a classifier bank built from a training set of faces.

Fig. 2. Classifier Bank
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3.4 Chamfer Image

To measure support for any single edge feature over a training set we need some
way of measuring the edge strength along that feature in the image. This can
be computed efficiently using Chamfer matching. Chamfer matching was first
introduced by Barrow et al [2]. It is a registration technique whereby a drawing
consisting of a binary set of features (contour segments) is matched to an image.
Chamfer matching allows features to be considered as point sets and matching
is efficient as the image is transformed into a chamfer image (distance) only once
and the distance of any feature can then be calculated to the nearest edge as a
simple lookup to that chamfer image. The similarity between two shapes can be
measured using their chamfer distance.

All images in the training set undergo edge detection with the canny edge
detector to produce an edge map. Then a chamfer image is produced using a
distance transform DT. Each pixel value q, is proportional to the distance to its
nearest edge point in E:

DTE(q) = mine∈E ‖q − e‖2 (1)

To perform chamfer matching, two sets of edges are compared. The contour
fragment (T) and image edge strength E, producing an average Chamfer score:

d
(T,E)
cham(x) =

1
N

∑

t∈T

mine∈E ‖(t + x) − e‖2 (2)

where N is the number of edge points in T. This gives the Chamfer score as
a mean distance between feature T and the edge map E. Chamfer images are
expensive to compute, however this needs only be computed once per image. The
function d

(T,E)
cham(x) is an efficient lookup to the chamfer image for all classifiers.

An example of a chamfer image is shown in figure 1.

3.5 Learning

Boosting is a machine learning algorithm for supervised learning. Boosting pro-
duces a very accurate (strong) classifier, by combining weak classifiers in lin-
ear combination. Adaboost (adaptive boosting) was introduced by Freund and
Schapire [10] and has been successfully used in many problems such as face de-
tection [17] and object detection [16]. Adaboost can be described as a greedy
feature selection process where a distribution of weights are maintained and
associated with training examples. At each iteration, a weak classifier which
minimizes the weighted error rate is selected, and the distribution is updated
to increase the weights of the misclassified samples and reduce the weights of
correctly classified examples. The Adaboost algorithm tries to separate training
examples by selecting the best weak feature hj(x) that distinguish between the
positive and negative training examples.

hj(x) =

{
1 if d

(T,E)
cham(x) < θj

0 otherwise

}
(3)
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θ is the weak classifier threshold. Since setting a fixed threshold requires a priori
knowledge of the feature space, an optimal θj is found through an exhaustive
search for each weak classifier. An image can have up to 1,000 features, thus over
the training set, many thousands of features are evaluated during the learning
algorithm. This allows the learning algorithm to select a set of weak classifiers
with low thresholds that are extremely precise allowing little deviation, and weak
classifiers with high thresholds which allows consistent deformation of the facial
features. This increases the performance but as will be seen, does not result in
over fitting the data.

Fig. 3. Strong Classifier Visualization

Positive training examples are taken from the target expression and negative
examples from other sets of expressions. Following boosting the final strong
classifier consists of edge features which can be visualized. Figure 3 shows the
classifiers for joy, surprise and anger trained against neutral expressions, the
circles depict the position of the 3 point basis. Note that these visualizations
reflect what we assume about expressions, eg surprise involves the raising of
the eyebrows and anger ’the deformation’ around the nose. However perhaps
surprisingly, the mouth does not play an important role in the joy classifier, which
is both counter intuitive and contradictory to AU approaches. This is partly
due to higher variability away from the center of the 3 point basis, but more
importantly the variability across subjects. People smile with their mouth open
or closed, so boosting decides that the lines on the cheeks are more consistent
features than those of the mouth. What boosting is doing is deciding its own
optimal set of AU’s based upon the data.

Training expressions against only neutral images results in a classifier that
learns all the deformation for that expression. While this is beneficial for visual-
isation or single class detection it presents problems to multi class detection as
many positive expressions will be confused by the classifiers. Training against all
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Fig. 4. Roc curves for each expression trained one against many

other expressions forms classifiers that only learn the deformation that is unique
to that expression, which reduces the number of false positives. Figure 4 shows
receiver operating characteristic (ROC) curves for each of the expression classi-
fiers. Expressions were boosted using all other expressions as negative examples
and over 1000 rounds of boosting.

3.6 N-Class Discriminatory Classifier

The following section is an investigation into different classifier approaches. In
this paper we investigated using the threshold response from the strong classifier,
likelihoods and ensemble methods for classification.

As our n-class classifier is to be built from binary classifiers some way of com-
bining classifiers responses is required in order to disambiguate between expres-
sions. The unthresholded classifier response cannot be used, as each classifier has
a different number of weak classifiers, different thresholds and therefor different
responses and ranges.

A more principled way to compare responses is to use likelihoods. Positive
and negative probability distribution functions (pdf’s) were constructed for each
classifier, using a validation set. Noise in terms of x,y translation was added to
the validation set in order to artificially increase the set. Positive and negative
responses from the validation set were then used to build histograms (figure 5 and
figure 6). Parzen windowing was used to populate these histograms. To calculate
the likelihoods a comparison is made between the response of the positive pdf’s
for each classifier.

The likelihood ratio was evaluated for each classifier by dividing the response
of the positive pdf by the response of the negative pdf for each classifier (equation
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Fig. 5. Positive Probability Distribution

Fig. 6. Negative Probability Distribution

[4]). Where LR is the likelihood ratio, L is the likelihood and the positive and
negative pdf’s are Pp and Pn respectively.

LR(x) = MAX∀n

{
L(x, Pp)
L(x, Pn)

}
(4)

Dietterich [7] argues that ensembles methods can often perform better than a
single classifier. [7] proposes three reasons why classifier ensembles can be ben-
eficial (statistical, computational and representational). Statistical reasons are
based on the learning algorithm choosing a non-optimal hypothesis, given insuffi-
cient training data. By constructing an ensemble from accurate classifiers, the al-
gorithm can average the vote and reduce the risk of misclassification. For a n-class
classifier system, this can be broken into n(n−1)

2 binary classifiers respectively, al-
lowing each expression to be exclusively boosted against every other expression.
Using a binary threshold each classifier has a vote. Each n expression ensemble
classifier can receive (n-1) votes, and classification is done using a winner takes all
strategy.
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4 Expression Classification

The Cohn Kanade facial expression database [12] was used in the following
experiments. Subjects consisted of 100 university students ranging in age from
18 - 30. 65% were female, 15% were African American, and three percent were
Asian or Latino. The camera was located directly in front of the subject. The
expressions are captured as 640 x 480 eps images. In total 365 images were chosen
from the database. The only criteria was that the image represented one of the
prototypical expressions. This database is FACS encoded and provides ground
truth for experiments. Each image has a FACS code and from this code images
are grouped into different expression categories. This dataset and the selection
of data was used to provide a comparision between other similiar expression
classifiers [4] and [3].

Initial experiments were carried out by training each expression against 1) neu-
tral expressions only, 2) against all other expressions, selecting candidate features
from positives training examples only and 3) against all other expressions, select-
ing negative and positive features from all images in the training set. Training
expressions against only neutral images results in a classifier with the poorest per-
formance as there is little variance in the negative examples and many other ex-
pressions are misclassified by the detector. Training against all other expressions
improves performance as the classifier learns what deformation is unique to that
expression. The better classifier is one that selects negative features to reduce false
detections. This classifier outperforms the other two methods as each expression
has unique distinguishing features which act as negative features. To give a crude
baseline we normalize the classifier responses into the range 0-1 and the highest
response wins. As expected likelihoods is a better solution with marginal perfor-
mance gains. However the Likelihood ratio gives a significant boost . Using 5-fold
cross validation on the 6-basis expressions and 7-class (neutral class included) a
recognition rate of 67.69% and 57.46% is achieved.

Table 1. Recognition results 6 class

Method Joy Surprise Sad Fear Anger Disgust Overall

Classifier Response 78.67 81.43 55.72 38 77.14 40 61.83

Likelihood 78.67 82.86 57.14 56 60 40 62.45

Likelihood Ratio 90.67 91.43 51.43 36 88.57 48 67.69

Ensemble Classifier Response 96 95.72 82.86 72 91.43 72 85

The recognition results were poor when compared to the roc curves (figure 4)
for the classifiers. This is because when confusion between classifiers occurs,
examples are misclassified. To overcome this confusion several more principled
approaches were evaluated. Table 1 and table 2 show results using likelihoods
and likelihood ratio’s. All results presented in table 1 and table 2 are obtained us-
ing 5-fold cross validation with training and test sets divided 80-20. As expected,
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likelihood ratios outperform likelihoods yielding a 5% increase in performance.
From the results it was apparent that the more subtle expressions (disgust, fear
and sad) are outperformed by expressions with a large amount of deformation
(Joy, surprise,anger). Subtle changes in appearance are difficult to distinguish
when using one reference co-ordinate frame due to the variability across subjects.

Table 2. Recognition results 7 class

Method Joy Surprise Sad Fear Anger Disgust Neutral Overall

Classifier Response 78.67 68.57 48.57 50 65.71 12 46 52.78

Likelihood 70.69 71.43 25.71 44 71.43 20 64 52.47

Likelihood Ratio 73.35 68.57 31.43 50 82.85 32 64 57.46

Ensemble Classifier Res 95.99 92.86 65.71 58 92.28 84 76 80.69

In this research we have a 6-class and 7-class classifier system, this can be
broken down into 15 and 21 binary classes respectively, allowing each expres-
sion to be exclusively boosted against every other expression. Using a binary
threshold ( chosen from the equal error rate on the ROC curve ) each classifier
has a vote. Each n expression ensemble classifier can receive (n-1) votes. When
confusion occurs, a table of likelihood responses is kept, the product of these is
compared for each class of confusion and the highest likelihood wins. Using the
binary voting scheme with the ensemble classifier gives an increase of up to 27%
in recognition performance.

Table 3 compares this work with other facial expression classifiers. For a direct
comparison we compare our results to other methods that use Adaboost and the
Cohn Kanade database. Bartlett et al [3] performed similar experiments on
the same dataset using Adaboost to learn Gabor wavelet features and achieved
85% accuracy. Further more Shan and Gong [4] learnt LBP through Adaboost
and achieved 84.6% accuracy. Table 3 summarises that using contour fragments
as a discriminatory classifier is comparably to Gabor wavlet and LBP features.
It is important to note that while performance equals the state of the art, the
application of our classifier is extremely efficient. A worst case classifier of 1000
weak classifiers takes only 3ms to assess within a half pal image based upon our
implementation on a 3GHz P4 machine.

Table 3. Comparisons between other boosting based expression classifiers using Cohn
Kanade database

Methods Results

Local Binary Patterns with Adaboost [4] 84.6%

Gabor wavelets with AdaBoost [3] 85%

Edge/chamfer features with Adaboost 85%
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5 Real Time Implementation

For real time detection in video sequences this work has been implemented with
the Viola-Jones [17] face detector from the openCV libraries [11]. The initial ex-
periments above required annotating the 3 point basis. For this implementation
we use a 2 point basis from the bounding box returning by the face detector.
Figure 7 shows the comparison of the three point basis (two eyes and nose) and
the two point basis (points returning by face detector). Interestingly only a small
performance drop is seen going from a 3 point basis to 2.

Fig. 7. Comparison between 2 and 3 point basis

Detection is reliant upon a good edge detection and therefore Chamfer map,
however, edge information varies with lighting conditions, scale and subject. For
reliable recognition, a suitable edge threshold is required for the given subject.
An optimal threshold (OT) classifier was therefore constructed in a similar way
to the previous classifiers, this is then used to alter the edge threshold at run
time. This allows continuous parameter selection and thus our system is more
robust to subject change and lighting conditions. The OT classifier is build using
positives examples from different expressions with an optimal threshold selected
manually. The negative examples are the same expressions with extremely low
(high noise ratio) edge thresholds. This allows boosting to select features which
are consistent across all expressions at an optimal edge threshold and more im-
portantly negative features consistent across expressions at low edge thresholds.
Since the features of the face provide strong edge information across a range of
edge thresholds the OT classifier was predominantly constructed from negative
features which are consistent only at low edge thresholds. At runtime the re-
sponse of the OT classifier will peak at a suitable threshold which can then be
used with the other classifiers.
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6 Conclusions and Future Work

In this paper a novel automatic facial expression classifier is presented. Unlike
other popular methods using Gabor wavelets, we have developed a real time
system. For a 6 class (Joy, Surprise, Sadness, Fear, Anger and Disgust) system
a recognition rate of 85% is achieved. Recognition is done on a frame by frame
basis. As suggested in the literture [7], ensemble methods can often outperform
single classifiers. In our experiments, the ensemble classifier approach provided
an increase of up to 27% in recognition rates.

Bassili [14] demonstrated how temporal information can improve recognition
rates in humans. Some faces are often falsely read as expressing a particular
emotion, even if their expression is neutral, because their proportions are natu-
rally similar to those that another face would temporarily assume when emoting.
Temporal information can overcome this problem by modeling the motion of the
facial features. Future work will incorporate temporal information into the cur-
rent approach.
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Abstract. Recently skeletal motion data is obtained from the motion
capture and is used for movie and sports. The movie production does not
need the skeletal motion data but the body surface data. It is difficult to
generate body surface data from only skeletal motion data because mus-
cle deforms according to the skeletal motion. Muscle deformation occurs
with arm and leg joint rotation. In this paper, we visualize body surface
deformation based on the deformation mechanism that is applicable to
human motion according to anatomy based modeling. We propose the
method generating body surface by covering the skeletal muscles using a
thin film based on the level set method. We demonstrate the effectiveness
of the system through the generation of the movement of a body builder
by using the proposed system.

1 Introduction

It is studied to measure and calculate the human motion in the several fields.
Recently, body surfaces[1][2] and skeletal motions[3] have been measured using
cameras and range sensors. It is possible to scan not only the body surface but
also the inside of the body using MRI and CT in the medical field[4]. A part
from this, a bipedal walking robot has been studied [5]. The composite method
of the human motion based on the physical model was studied[6].

The importance of anatomy based modeling has been discussed[7][8]. We can
find the muscles and they deform according to the finite element methods[9][10].
However we cannot appear the model of muscle fibers in the paper. Face de-
formation based on the countenance muscle was studied to generate angry and
cheerful countenance[11]. The deformation mechanism of face muscle is basically
different from that of skeletal muscle[12]. Although the visualization of the hu-
man body based on motion has been studied[1][2][13], the muscle deformation
was not simulated based on the muscle deformation mechanism according to
skeletal motion. We do not generate only muscles but also muscle fibers. In this
paper, we visualize the skeletal muscle based on its deformation according to
skeletal motion.

If the skeletal muscle contracts and decreases in length, it becomes thick. How-
ever the skeletal muscle stretches and its length increases, it becomes thin. These
situation occurs because muscle fibers move with the contractions and streching
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of the skeletal muscle. We visualize skeletal muscle deformation according to the
human motion based on the mechanism.

While the body surface is generated using the cylinder model[14] in the case of
representing the human body related to the anatomy, it is difficult to generate
the human body using only cylinders. Though we follow the anatomy based
modeling, we do not generate the body surface by using the cylinder model but
covering the skeletal muscles using a thin film. We generate the three dimensional
image by mapping the points on the body surface in the three dimensional space
that an animal exists. Thus we propose the method generating the human body
by using the level set method[15] from the obtained three dimensional image. In
this paper, we extend the region partition method based on level set method[16]
applying for the two dimensional image to the method applying for the three
dimensional image. It is enable to to visualize the body surface deformation
using only skeletal motion data obtained from the motion capture.

The importance generating the several body types such as overweight and
underweight human by deforming a body surface obtained using range sensors
is discussed[17]. We show that the trained muscle and the normal muscle can be
visualized by changing the skeletal muscle parameters according to the concept.

We discuss the skeleton and the skeletal muscle in section 2, and the muscle
fiber model in section 3, and the generation of the body surface in section 4. We
demonstrate the effectiveness of the method by visualizing muscle deformation
based on skeletal motion in section 5.

2 Skeleton and Muscle

2.1 Skeleton

The skeletons of a human were generated their based on images in medical
book[18][19]. Bones are connected together through joints. The number of joints
in the human skeleton for the human model used in the experiment is 56, includ-
ing the 38 in the hands. Each joint has three degrees of freedom. The number
of human bones for the human model used in the experiment is 59 including 33
bones in the hands.

The neighbor skeletons share a parent child relationship and we define the
joint angle between them. The human motion is calculated from the joint angle
by using forward kinematics[20]. As the body motion can be calculated using
motion capture data, we can use the motion capture data to determine the body
motion.

2.2 Skeletal Muscle

The human body is composed of several tissues in skin, muscle, skeleton, vis-
cera, and neuron. These tissues are classified into epithelial, connective, muscle
and nervous tissue. Among these tussues, only the muscle tissue can contract
and stretch. The muscle tissue is classified into skeletal muscle, cardiac muscle,
and smooth muscle tissue. The skeletal muscle is used to cover and move the
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(a) (b) (c) (d)

Fig. 1. The muscle fibers: (a) deltloid muscle, (b) spindle muscle, (c) bicepts muscle,
and (d) triceps muscle

bones. The strength and velocity of muscle contraction and stretching can be
consciously controlled. The smooth muscle tissue is called viscera as it is used as
the wall of the viscera and it contracts and stretches unconsciously. The cardiac
muscle is in the heart and it contracts and stretchs unconsciously. As muscle
fibers are soft and fragile, they have strength by collecting many fibers. If skele-
tal muscle contracts and stretchs, the body moves. The number of the skeletal
muscle is about 400, and it occupies about 40% in the human body weight.

A skeletal muscle is the symmetrical shape for the rotation. A skeletal muscle
is composed of eight muscle fibers covering a skeletal muscle. Figures 1(a), (b),
(c), and (d) show deltoid, mitotic spindle, biceps and triceps muscles respectively.
The one side of the biceps muscle connects to bone and another side connects to
the two bones. The one side of the triceps muscle connects to bone and another
side connects to the three bones. In this paper, a muscle type is generated by
using some skeletal muscles of the spindle shape. The number of the human
skeletal muscle types is 34. The number of the human skeletal muscles is 178.
Their skeletal muscles are generated based on medical books[18][19]. Figures
2(a) and (b) show the skeletal muscle of the human body for the initial model as
viewed from the fromt and the rear, respectively. Figure 2(c) shows the skeletal
muscle of the human hand for the initial model. We use them as the initial model
of the human body.

3 Muscle Fiber Model

A skeletal muscle is located between two neighbor skeletons that connect at
a joint. The angle joint can be varied by contracting the skeletal muscle. If
the skeletal muscle decrease in length, the muscle fibers moves sideways, and
the skeletal muscle swells. If the skeletal muscle increases in length, the muscle
fibers move lengthwise and the skeletal muscle thins. Figure 3 shows the muscle
deformation. The biceps of the brachii muscle contracts and expands, as the
joint between an upper and a lower arm bends.

A joint between a bone and a skeletal muscle moves with the rotation of a
joint between neighboring bones rotates. As bones move, the connection between
a skeletal muscle and a bone also moves and there is a change in the thickness
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(a) (b)

(c)

Fig. 2. (a) The skeletal muscle of the human body for the initial model as viewed from
the front. (b) The skeletal muscle of the human body for the initial model as viewed
from the rear. (c)The skeletal muscle of the human hand for the initial model.

of the skeletal muscle. If the muscle length is |a| and the distance between the
muscle fiber and the center line of the skeletal muscle is r, then the cylinder
volume is V = r2 · π · |a|. On the other hand, if the muscle length |a| changes
to |b|, the volume changes to V ′ = r′2 · π · |b|. The volume does not change

as the radius r changes to r′ = k · r ·
√

|a|
|b| . That is, the radius of the muscle

is r′ = k · r ·
√

|a|
|b| after the joint between two bones rotates. If the radius is

k times the radius of the initial model, the volume changes to k · k times the
initial volume. We refer to parameter k as the thickness parameter of the skeletal
muscle. If k = 0.9, the volume decreases to 0.81 times as big as the initial volume.

The movement of the muscle fiber is estimated on the basis of this model.
At first, we put the initial model of skeletal muscles and skeletons in the three
dimensional world coordinate space represented as (x, y, z). If the center axis
of the skeletal muscle in the initial model is (xa1, ya1, za1), (xa2, ya2, za2), then
the center axis of the skeletal muscle after the joint between two bones ro-
tates is defined as (xb1, yb1, zb1), (xb2, yb2, zb2) and the center of the rotation
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Fig. 3. The position of the muscle fiber is calculated from the initial model. The left
figure shows the initial model. The right figure shows the muscle at the current time.

is (xa1, ya1, za1), (xa2, ya2, za2). The start point (xb1, yb1, zb1) and the end point
(xb2, yb2, zb2) after the joint between the bones rotates can be calculated, because
the start and end point have the information of the connecting bones.

The muscle fiber position (x′′′, y′′′, z′′′) can be calculated using the muscle
fiber position (x, y, z) in the initial model, the center axis of the skeletal muscle
(xb1, yb1, zb1), (xb2, yb2, zb2) after the rotation of the joint and the center axis
of the skeletal muscle (xa1, ya1, za1), (xa2, ya2, za2) in the initial model. If a =
(xa2, ya2, za2) − (xa1, ya1, za1), b = (xb2, yb2, zb2) − (xb1, yb1, zb1),

⎡

⎢⎣

xa2−xa1
|a|

ya2−ya1
|a|

za2−za1
|a|

⎤

⎥⎦ = Rx(α)Ry(β)

⎡

⎣
0
0
1

⎤

⎦ . (1)

As the variables except the rotation angles α and β are known, the rotation
angles α and β can be gotten by solving the equation. The matrix Rx(α) shows
the rotation matrix that rotates α degree around x axis, and the matrix Ry(α)
shows the rotation matrix that rotates β degree around y axis.

⎡

⎢⎣

xb2−xb1
|b|

yb2−yb1
|b|

zb2−zb1
|b|

⎤

⎥⎦ = Rx(α′)Ry(β′)

⎡

⎣
0
0
1

⎤

⎦ (2)

As the variables except the rotation angles α′ and β′ are known, the rotation
angles α′ and β′ can be gotten by solving the equation.

The muscle fiber position (x, y, z) of the initial model moves to the position
(x′, y′, z′) on the z axis.

⎡

⎣
x′

y′

z′

⎤

⎦ = Ry(−β)Rx(−α)

⎡

⎣
x − xa1
y − ya1
z − za1

⎤

⎦ (3)
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If θ = tan−1 y′

x′ , r =
√

x′2 + y′2, the muscle fiber position (x′, y′, z′) that the
center of the skeletal muscle is on the z axis moves to the position (x′′, y′′, z′′)
by constructing the muscle fiber.

⎡

⎣
x′′

y′′

z′′

⎤

⎦ =

⎡

⎢⎢⎢⎣

k · r ·
√

|a|
|b| cosθ

k · r ·
√

|a|
|b| sinθ√

|b|
|a| · z′

⎤

⎥⎥⎥⎦ (4)

The muscle fiber position (x′′, y′′, z′′) that the center of the skeletal muscle is on
the z axis moves to the position (x′′′, y′′′, z′′′) by the translational motion in the
following equation.

⎡

⎣
x′′′

y′′′

z′′′

⎤

⎦ = Rx(α′)Ry(β′)

⎡

⎣
x′′

y′′

z′′

⎤

⎦ +

⎡

⎣
xb1
yb1
zb1

⎤

⎦ (5)

The muscle fiber position (x′′′, y′′′, z′′′) at this point of time is calculated using
the muscle fiber position (x, y, z) of the initial model. Thus we can calculated
the muscle deformation from the initial model of the skeletal muscles, the initial
model of the skeletons and the body motion data.

4 Generating Body Surface That Covers the Skeletal
Muscle

We generate a body surface that covers the skeletal muscle. We mapped the
three dimensional image from the space where the animal exists. In this study,
the body surface is composed of many triangles. We can increase the surface
points on the surface in the three dimensional image by dividing a triangle into
a number of smaller triangles. The body surface is thus generated from the three
dimensional image.

Recently, an image processing method based on a moving curved surface was
proposed using a partial differential equation[16]. As the level of the function
φ = 0, based on a geometric measure is defined using the partial differential
equation, this method is referred to as the level set method. An active contour
model was proposed to detect from the image with noise. In this study, we employ
the active contour model based on the method of the defining the level of the
function φ = 0, which in turn is based on a geometric measure. The original
image is u0, and the phase φ is the function required to detect the region. This
enables us to define an arbitarily initial value. The contour is φ = 0 in the phase
φ. The function u is the result of the region partition. The variable ν is the
surface smoothing parameter.

∂φ

∂t
= δ(φ)(ν∇ · ( ∇φ

|∇φ| )−

((u0 − c1)2 − (u0 − c0)2)) (6)
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c1 =
∫

uoH(φ)dxdy∫
H(φ)dxdy

c0 =
∫

uo(1 − H(φ))dxdy∫
(1 − H(φ))dxdy

u = c0(1 − H(φ1)) + c1(H(φ0)) (7)

We extend this method to detect the three dimensional regions in this paper.
The function H is the Heaviside function and the function δ(x) which satisfies
δ(x) = ∂H(x)

∂x . In the present method, the point that a number of phases are used
to detect certain regions is different from active contour model based on partial
differential equation If n is the number of φ, the image is classified into 2n regions.
As shown the partial differential equation divides a three dimensional image into
four regions. Hence, if three phases are used, the image will be classified into eight
regions. We define the initial phases arbitrarily. We define the positive values in
the interior of the objects and the negative values for all locations except the
interior of the objects. The initial phase φ at an image point is defined as the
distance between the φ = 0 contour and the image point. We extend the method
for the two dimensional image to the method for the three dimensional image.

∂φ1

∂t
= δ(φ1)(ν∇ · ( ∇φ1

|∇φ1|
)

−(((u0 − c11)2 − (u0 − c01)2)H(φ2)

+ ((u0 − c10)2 − (u0 − c00)2)(1 − H(φ2)) (8)

∂φ2

∂t
= δ(φ2)(ν∇ · ( ∇φ2

|∇φ2|
)

−(((u0 − c11)2 − (u0 − c10)2)H(φ1)
+ ((u0 − c01)2 − (u0 − c00)2)(1 − H(φ1)) (9)

c11 =
∫

u0H(φ1)H(φ2)dxdydz∫
H(φ1)H(φ2)dxdydz

c10 =
∫

u0H(φ1)(1 − H(φ2))dxdydz∫
H(φ1)(1 − H(φ2))dxdydz

c01 =
∫

u0(1 − H(φ1))H(φ2)dxdydz∫
(1 − H(φ1))H(φ2))dxdydz

c00 =
∫

u0(1 − H(φ1))(1 − H(φ2))dxdydz∫
(1 − H(φ1))(1 − H(φ2))dxdydz

(10)

u = c11H(φ1)H(φ2) + c10H(φ1)(1 − H(φ2))
+ c01(1 − H(φ1))H(φ2) + c00(1 − H(φ1))(1 − H(φ2)) (11)

Some regions can be detected from an three dimensional image.
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Fig. 4. The skeletal motion of the posing body builder. These figures show 20th, 60th,
90th, and 110th frame from the left side.

(a) (b)

(c) (d)

Fig. 5. The muscle deformation of the posing body builder visualized using the thick-
ness parameter k = 1.5. (a) The 40th frame. (b) The 45th frame. (c) The 50th frame.
(d) The 55th frame.

5 Visualizing Muscle Deformation Based on Skeletal
Motion

We explain the process for visualizing muscle deformation.

– The articulated body motion for the skeleton is calculated as shown in
section 2.
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(a) (b)

(c) (d)

Fig. 6. The muscle deformation of the posing human visualized using the thickness
parameter k = 1.0. (a) The 40th frame. (b) The 45th frame. (c)The 50th frame. (d)
The 55th frame.

– Skeletal muscle deformation is calculated as shown in section 3.
– The body surface that covers the skeletal muscle with thin film is generated

as shown in section 4.

Figure 4 shows the human motion generated by the posing of a body builder.
The animation for this motion is composed of 120 frames. The muscle defor-
mation is calculated using the human muscle. In general, if the thickness of the
skeletal muscle changes, the contraction power also changes. The thickness of
the skeletal muscle in Figure 5 is different from the thickness in Figure 6. The
muscle deformation of the human model shown in Figures 5 and 6 is generated
based on the mechanism of the human motion shown in Figure 4. The thickness
parameter of the skeletal muscle is k = 1.5 and k = 1.0 in Figure 5 and 6, respec-
tively. Figures 5 as well as Figures 6(a), (b), (c) and (d) show the images of the
40th, 45th, 50th, and 55th frames, respectively. The skeletal muscle of Figure 5
is thicker in comparison with that of Figure 6. You can have more muscular
impression for human shown in Figure 5 than the human shown in Figure 6.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Figures (a) and (b) show the x-y cross section of the phases φ0 and φ1 at the
iteration number t = 0. Figures (c) and (d) show the x-z cross section of the phases φ0

and φ1 at the iteration number t = 0. Figures (e), (f),(g), and (h) show the x-y cross
section of the u image at the iteration numbers t = 8, t = 64, t = 512 and t = 4096
respectively.

As the thickness of the skeletal muscle changes according to the mechanism of
the muscle deformation.

We calculate the body surface from the skeletal motion shown in Figure 4. A
triangle existing on the muscle surfaces is subdivided into a number of smaller
triangles. We generate the three dimensional image u0 by mapping the points on
the body surface in the three dimensional space that an animal exists. The image
size is 74 × 135 × 26 pixels. The parameter ν and time constant dτ required for
the calculation is defined as 0.03 and 0.0001 respectively. Two phases are used.
Figures 7(a), (b), (c), and (d) show the phase images for the iteration number
t = 0. The x-y cross sections of the phases φ0 and φ1 for z = 13 are shown in
Figures 7(a) and (b), respectively and the x-z cross sections of the phases φ0 and
φ1 for y = 67 are shown in Figures 7(c) and (d), respectively. Figures 7(e), (f),
(g), and (h) show the x-y cross section of the u image for z = 13 at the iteration
numbers t = 8, t = 64, t = 512, and t = 4096, respectively. It is found that
the human body appears gradually as the iteration number increases. Figure 8
shows the thin film covering of the skeletal muscle. The human body surfaces
covering the muscle of the posing body builder is visualized using the thickness
parameter k = 1.5. Figures 8(a) and (b) are generated from the 43th frame, and
Figures 8(c) and (d) are generated from 58th frame. Figure 8(a) and (c) are the
body surface viewed from the front and figure 8(b) and (d) is the body surface
viewed from the rare. It is found that the muscles deform with the motion of the
human skeletons.
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(a) (b)

(c) (d)

Fig. 8. The human body surfaces covering the muscle of the posing body builder is
visualized using the thickness parameter k = 1.5 for the 43th frame in figures (a)(b) and
58th frame in figures (c)(d) . The body surfaces seen from the forward and backward
directions are shown in figures (a)(c) and figures (b)(d).

6 Conclusions

We visualized muscle deformation and the body surface covering of the skeletal
muscle from the human motion. We demonstrated that this method can be
applied for certain subjects such as humans as well as for certain motions such
as posing and running. It is shown that several types of muscles such as trained
muscle and normal muscle can be also visualized.
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Patch-Based Pose Inference with a Mixture of Density
Estimators
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Abstract. This paper presents a patch-based approach for pose estimation from
single images using a kernelized density voting scheme. We introduce a boosting-
like algorithm that models the density using a mixture of weighted ‘weak’ esti-
mators. The ‘weak’ density estimators and corresponding weights are learned
iteratively from a training set, providing an efficient method for feature selection.
Given a query image, voting is performed by reference patches similar in appear-
ance to query image patches. Locality in the voting scheme allows us to handle
occlusions and reduces the size of the training set required to cover the space
of possible poses and appearance. Finally, the pose is estimated as the dominant
mode in the density. Multimodality can be handled by looking at multiple domi-
nant modes. Experiments carried out on face and articulated body pose databases
show that our patch-based pose estimation algorithm generalizes well to unseen
examples, is robust to occlusions and provides accurate pose estimation.

1 Introduction

We consider the problem of pose estimation from monocular images. To date, many
successful pose estimation algorithms have been proposed, but most of them rely on
retinotopic representations. Such a representation requires preprocessing, i.e. the object
or person must be normalized in location and scale to fit a canonical view. This sim-
plifies the representation, but puts the burden on detecting the location and scale of the
object in the image, which is not a trivial task. In addition, global representations are
relatively sensitive to occlusions and normalization errors.

Using local and sparse descriptors has proven to be useful for tasks such as object
categorization [12,10,11]. Local feature-based approaches provide a robust representa-
tion because object classes are modeled by a set of local descriptors, which are usually
more discriminative than global descriptors. These approaches can handle missing data
(e.g. occlusions and partial views), and generalize better than global methods since they
have compositional properties, e.g. descriptors from different poses can be combined to
produce a pose that is not in the training set.

In this paper we advocate the use of patches as local descriptors, but it raises two
challenges. First, there is the bag-of-features dilemma. If patch descriptors are too lo-
cal, or if their relative position is not taken into account, the geometric relationships be-
tween patches might be lost making impossible to estimate the pose. Then, the patches
are ambiguous: as they will, in general, correspond to multiple poses, it is important
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to define a good pose distribution model that can represent the wide range of poses
associated with a patch.

In this paper, we propose a learning-based approach for pose estimation from a
density-based voting scheme. We first construct a database containing a set of pose-
patch associations. Our approach avoids the use of complex part-based models being
able to learn the geometric structure from images. Given a query image, the pose den-
sity is approximated by kernels associated with patches from the training set similar to
patches in the image. Modes of the density correspond then to most likely poses.

When the number of training examples is large and the pose space is high dimen-
sional, the computational cost of the density estimation becomes prohibitive. To miti-
gate the problem we propose a boosting-based feature selection algorithm that builds
a density estimator by iteratively adding a (weak) density estimator using a subset of
the training patches, selected to minimize the overall training error. Our algorithm re-
tains the most discriminative patches for pose estimation and provides accurate density
estimates. Moreover, it is directly amenable to integration with prior models for proba-
bilistic tracking.

2 Previous Work

Discriminative approaches to pose estimation learn a mapping from image to pose.
Shakhnarovich et al. [15] propose to locally regress k-nearest neighbors. This approach
relies on a large database generated using a rendering software (POSER [2]). Although
fast and accurate for small dimensional spaces, it requires extremely large training sets
that grow exponentially with the pose dimensionality. Agarwal et al. [3] use RVM to
learn a continuous mapping between image measurements (i.e., shape context from
silhouettes) and 3D pose. To reduce the sensitivity to the presence of clutter, recent
work [4] uses sparse (grid-based) image features for pose estimation and non-negative
matrix factorization to learn clutter. Manifold learning techniques [20,9,21] have also
been investigated to learn low dimensional representations of the pose distribution, but
in general have been limited to a restricted set of activities.

All previously mentioned approaches are limited in their use of retinotopic represen-
tations, i.e., pose is computed on normalized images where the person has a somewhat
known fixed size and location. Such approaches are usually not robust to occlusions,
clutter and normalization errors. In this paper, we propose a local representation to ad-
dress these issues.

Model-based approaches [6,16,18] usually minimize the reprojection of a paramet-
ric model to the image. These techniques, however, rely on good initialization, require
complex and precise models and are computationally expensive. In [7,14,17,19], spe-
cialized appearance models or detectors are trained on individual body parts and com-
bined with geometric constraints. This requires expensive manual labeling of the body
parts and modeling appearance under different view-points might be difficult.

In a similar manner, methods using part-based representations have been developed
for object categorization [12,13,10,11]. The approach described in [10,11] employs an
Implicit Shape Model (ISM) that consists of both the local appearance and the spatial
probability distribution of each codebook entry. Pose estimation is possible with this
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approach but it is limited to the estimation of the scale and 2D center location of an
object in the image.

In this paper, we advocate a part-based approach and generalize the technique de-
veloped by [10,11] to generic 2D and 3D pose estimation (e.g. fiducial, head pose,
articulated body pose). Here, the spatial probability of codebook entries is modeled rel-
ative not just to the object center and scale, but to the object pose. As in [10,11], we
estimate the pose distribution associated with each image patch by comparing the query
patch to reference patches for which the pose is known. All image patches contribute to
the density by soft voting. Analysis of the density allows probabilistic inference of the
global pose associated with the image.

3 Density from Image Patches

Given a training set of pairs {(Ii, xi)} where Ii is an image and xi ∈ IRn a pose we
wish to learn a function Φ(x, I) that models the conditional density distribution p(x|I)
for all the images in the training set. Given a query image I ′, the pose x′ = f(I ′) can
be estimated at the modes of Φ(x, I ′).

For a face pose could refer, for example, to the 2D location of fiducial points mi =
(ui, vi). In this case, x = (m1, . . . , mN)�. In case pose represents the orientation of
the face, x is a 2-dimensional vector containing horizontal and vertical components.
For an articulated body, pose can represent the 3D joint locations M i = (Xi, Yi, Zi).
In this case, x = (M 1, . . . , MN )�.

3.1 Building a Patch Database

For each image I , interest points ui are extracted (e.g. Harris) and descriptors dj are
evaluated at multiple scales in order to capture both local and semi-local information.
Our approach does not rely on a specific image descriptor. As pose is sensitive to the
orientation and translation components of patches, we choose descriptors which are not
invariant to affine or Euclidean transformations. Descriptors can be normalized intensity
vectors or silhouette patches, edge orientation histograms or SIFT descriptors.

We build hashing functions by extracting descriptors and associated poses for all
training image/pose pairs in the database. Each patch has an associated triplet
{(dj , σj , xj)}, where σj is the scale. If the pose is given with respect to a referen-
tial, e.g. the pose is defined relative to the location of the keypoint uj and geometric
constraints can be captured by the voting process.

3.2 Implicit Geometric Constraints

We define x̄ a patch-relative pose that is independent from the keypoint location by
defining a mapping gu(x).

If x corresponds to a set of 2D image points x = (m1, . . . , mN )�, with mi =
(ui, vi), we choose gu as:

x̄ = gu(x) = σ(x − (u, . . . , u)�) (1)
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Fig. 1. Density estimation from image parts. Each patch from image I is matched to the database.
k-nearest neighbors are retrieved and populate the density space with a set of kernels representing
the pose distribution associated with the query patch. In this example, k=3.

If x corresponds to a set of 3D image points x = (M1, . . . , MN )�, with M i =
(Xi, Yi, Zi) the 3D coordinates. We can choose gu to be

gu(x) = (M1 − U , . . . , MN − U)�

with U = kf (u − p0) where kf is the size (in metric units) of a pixel and p0 is the
principal point of the camera.

4 Pose Density Estimate

Let S = {(dj, σj , x̄j)} be a database of reference pose-patches. Let I be a query image
from which we wish to retrieve the pose density p(x|I).

For each descriptor, the k closest reference patches (in terms of descriptor distance)
from S are extracted. For each retrieved reference patch, an ‘absolute’ pose xj is com-
puted from the relative pose x̄j as xj = g−1

u (x̄j).
Let n(j) be the index of the jth nearest neighbor of the descriptor d. Vectors xj =

g−1
u (x̄n(j)) are the absolute poses corresponding to a feature point located at location

ui in the image.
Let N be the number of patches in the image. A kernel-based density estimator

ΦS(x, I) can be defined at an arbitrary pose x as:

ΦS(x, I) =
1
Z

N∑

i=1

L(x, ui, di) (2)
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Fig. 2. Pose x corresponds here to the 2D locations of fiducial points. For each keypoint u1

and u2, the ‘relative’ pose is computed locally as x̄1 and x̄2. In case pose is in 3D, the same
mechanism can be applied: the pose of the 3D points x̄ are given in a referential centered at the
point location u, considered as a 3D point on the image plane.

where Z is a normalization constant

L(x, u, d) =
k∑

i=1

K(x, xj) (3)

with xj the absolute poses of the k-most similar patches to d in S. K(xi, xj) is a
Gaussian kernel defined as:

K(xi, xj) = λe(xi,xj)�Σ(xi,xj) (4)

where Σ is the covariance of kernel. L(x, u, d) can be seen as a factored representation
of x for patch d. For a given x, the function ΦS(x, I) provides an estimation of p(x|I).
This is illustrated by Figure 3. Computing Σ from training data can become relatively
intractable for large databases. In general, we choose Σ that minimizes the training
errors. However, when pose x = (m1, . . . , mn) corresponds to a set of 2D points, we
define Σ as a block diagonal matrix

Σ = diag(Λ1, . . . , Λn) (5)

where Λi is a 2x2 matrix defined as Λi = μ2‖mi − u‖2I2 where μ is a user-defined
constant. This gives lower confidence to the location of points away from u.
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The modes of ΦS(x, I) can be obtained with the mean-shift clustering algorithm [5].
Our approach can be seen as a soft voting scheme where larger values of ΦS(x, I) are
obtained for regions corresponding to an accumulation of kernels.

Clutter is handled naturally as it will usually be matched to arbitrary reference patches,
creating thus some noise in the density.

Fig. 3. Inference: each image patch is compared to the database. In this example, 3 nearest neigh-
bors are extracted from the database providing 3 kernels. The green skeleton represents the ‘fac-
tored’ distribution L.

5 Feature Selection

When the number training patches is large, the computational cost of evaluating eq. (2)
might be prohibitive. Here, we propose to approximate the posterior probability by a
mixture of experts, where each expert takes into account a much smaller set of patches.

p(x|I) ≈ Φ(x, I) =
C∑

i=1

αip(x|i, I) = α̂Ψ , (6)

where αi = p(i|x) is the probability of each experts (i.e. gaiting function), α̂ =
[α1, · · · αN ] is the matrix of gaiting functions and Ψ = [p(x|1, I), · · · , p(x|N, I)] is
the matrix composed of the estimation of all the experts.
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When the experts have a parametric form they are usually trained with Expectation-
Maximization (EM). Since our experts are non parametric (i.e. we use a kernel-based
voting scheme), such training procedure does not apply. Instead, learning is done by
maximizing the KL divergence between the probability estimated from all the training
data, p(x|I), and the approximation made by the mixture of experts, Φ.

ε =
∑

i

DKL(p(x|Ii)||Φ(x, Ii)) (7)

=
∫

p(x|Ii) log(
p(x|Ii)
Φ(x, Ii)

)dx (8)

If the true distribution p(x|Ii) is a dirac centered at xi, a first order approximation
of eq. (8) gives:

ε = −
∑

i

log(Φ(x, Ii)) ≈ C −
∑

i

Φ(x, Ii). (9)

Learning the experts might still be very expensive is the number of experts required
to accurate learn the density is large. We further propose a more efficient algorithm that
is based on Adaboost.

5.1 Adaboost-Like Learning

At each iteration a new expert is learned and added to the existing mixture, and the
relative weights (i.e. gaiting units) of the experts are re-estimated by minimizing (8).
We restrict here the choice of the experts to be of the same form as the non parametric
density estimators of section 4, but where instead of being estimated from the entire set
of patches, they are estimated from a subset of them.

For large databases, finding the optimal set of patches at each iteration is compu-
tationally very expensive, instead, we propose to use a RANSAC scheme. Different
subsets of patches are randomly sampled. For each subset, the corresponding density
estimator is built and the optimal gating units are computed1. The selected density esti-
mator at each iteration is the one with the smallest error (8).

6 Experimental Evaluation

In order to evaluate the performance of our density-based pose estimation algorithm,
we performed experiments on 3 different datasets.

For each dataset, a patch-pose database was built as described in Section 3.1: for each
image of the training set, interest points were extracted and descriptors were computed
at their location at multiple spatial scales and stored in the database along with the
corresponding pose.

1 Given a set of experts Ψi, the gating units that optimize (8) can be computed in closed form as
α̂ = 1

ΣiAi
A, where Ai = ΣjΨi(xj).
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Fig. 4. Experiments on the BioID database. (left) Variation of the ground truth error of the
density-based pose estimation algorithm vs. Adaboost-like iterations. After the 7-th iteration,
the error is already relatively small and very close to the error obtained with the density estima-
tor using the entire dataset. (right) Variation of the ground truth error of the density-based pose
estimation algorithm vs. Number of nearest neighbors.

6.1 BioID Database

We carried out a set of experiments on the BioID database [1]. This database contains
1521 face images of 23 different persons labeled with pose corresponding to the 2D
locations of 20 fiducial points (e.g. nose, pupils, eyes and mouth corners). Most im-
ages are frontal views and contain clutter, large variations of expression, appearance (in
particular, some people wearing glasses), illumination and location in the image.

We built a patch database from a training set consisting of 1000 images and used
another 100 images for testing. Patches have a nominal size of 19x19. The database
contains around 90000 pose-patches.

For each weak density estimator, we chose a set of 300 randomly selected patches. As
shown in Figure 4 shows, the convergence of the feature selection algorithm is relatively
fast (7 iterations). In practice, we stop the algorithm when 10% or more of the database
had been selected. In this implementation, gu is defined as in eq. (1) and the covariances
Σ are defined as in eq. (5). We used the mean-shift algorithm to find the main mode of
the density.

In order to evaluate the efficiency of our feature selection algorithm, we implemented
a pose density estimator Φ using the entire database.

To evaluate the efficiency of our feature selection algorithm we compared to two
baselines: the full database and to random selection of a subset of patches that com-
prised 10% of the database: we randomly selected a large number (1000) of subsets
corresponding to 10% of the database and retained the subset with lowest training er-
ror. Table 1 reports the ground truth error for the three methods. Note that the errors
are relatively small (less than 3 pixels) for both the full database and our feature selec-
tion algorithm. Note also that the variance is much smaller than randomly selecting the
patches.

We also tested the robustness of our method to occlusions. See Figure 6. Black rec-
tangles were generated at a random location in the face. For small rectangles (30x30
pix.2) representing an eighth of the face surface, errors were sensibly similar to non
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Fig. 5. Experiments on the BioID database. Variation of the ground truth error of the densitybased
pose estimation algorithm vs. percentage of the initial training dataset used for training.

Table 1. Evaluation of the feature selection algorithm. The accuracy of our feature selection
approach is relatively similar to the performance using the full database.

Error (in pix.)
Feature select. (10%) 2.79 (0.78)

Full database 2.32 (0.52)
Random (10%) 4.98 (9.38)

occluded faces (mean error 2.52 pix. and variance 0.61). For larger rectangles (60x60
pix.2), the estimation degraded (mean error 4.46 pix. and variance 8.41).

6.2 Pointing’04 Database

We performed experiments on the Pointing04 database [8]. This database contains im-
ages of 15 subjects (2 sets, each with 93 views per subject). A pose corresponds to head
orientation and is defined by 2 angles (horizontal and vertical inclinations), which vary
in the database from -90 to +90 degrees. Note that this database is challenging as it
contains many occluded views (e.g. part of the face not contained in the image). We
defined the function gu as the identity (no geometric constraints) and chose Σ = 5.0I2.

Table 2. Mean and variance (in brackets) error for our pose estimation algorithm as a function of
the number of scales used in the database

scales Error (in deg.)
1 5.24 (10.98)
3 2.45 (7.37)
5 1.52 (6.29)
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Fig. 6. Example of results obtained for the ‘occlusion’ experiment. The errors are respectively
(from top to bottom) 2.02 pixels, 2.31 pixels and 5.6 pixels. Blue stars (*) are detected keypoints,
cyan crosses (+) are the ground truth fiducial points and red dots (.) are estimated by our algo-
rithm.
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Fig. 7. Experiments on the POSER database. The error (in pixels) of LWR (dotted) and our ap-
proach (solid) with respect to misalignment between the training and the testing images. As ex-
pected, our approach is perfectly insensitive to translations. In contrast, LWR error grows rapidly
with the amount of translation.

We trained our system on all users from one set and tested on a subject from the
second set. Table 2 reports the error as a function of the number of scales used by our
density-based pose estimation algorithm. Errors are relatively small, the large variances
reflect the presence of outliers (i.e. errors between 20 to 40 degrees). As expected,
increasing the number of scales decrease the error.

6.3 Articulated Pose

We performed experiments on synthetic sequences generated with a rendering software
package (POSER) from motion-capture data. These are similar to the sequences used
in [15, 4] and include for instance activities such as walking, dancing. The pose corre-
sponds to the 3D location of 20 joints.

We trained our algorithm on individual sequences (averaging 500 frames). We used
90% of the sequence for training and 10% for testing.

We compared our algorithm to LocallyWeighted Regression (LWR) as used in [15]
for instance. We generated sequences without background and centered in the charac-
ter. To test the sensibility to translation, we generated a database where the character
is exactly at the center of the image for training and we translated the testing images
in a random direction. Results are reported Figure 7. As expected, our approach is in-
sensitive to translations. With no translation, our approach and LWR perform similarly.
However, LWR error grows on with the amount of translation.

Our approach can also deal with multiple people. Figure 8 depicts an example of 2
people in a very cluttered background. The two people are obtained by detecting the 2
modes of the density by mean-shift clustering. The left image of Figure 8 depicts in red
circles the keypoints for which the pose density is high.
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Fig. 8. Experiments on the POSER database. (left) image containing some background and 2
subjects. The blues crosses represent the keypoints. The red circles represent keypoints for which
the density is high. (right) pose corresponding to the two principal modes of the density.

7 Conclusion

We presented a density-voting technique for pose estimation from patches. It relies on
the use of a local representation of pose that allows to efficiently combine evidence
from multiple patch while avoiding the bag-of-feature dilemna. To scale our approach
to large training sets, we presented a boosting-like feature selection approach, which
efficiently selects the most discriminative subsets of patches for pose estimation.

Our approach is relatively simple and does not require explicitly or implicitly mod-
eling people as parts. Instead, geometric constraints are learned directly from images.
The main advantage of our technique is that detection and pose estimation are done
simultaneously.

The local voting scheme allows us to use the contribution of individual patches si-
multaneously, making it robust to occlusions, partial views and the presence of clutter in
the scene. Our framework handles multiple people naturally by finding multiple modes
in the density. Applications for tracking are obvious as our pose density estimation
would integrate nicely with dynamic priors.

Finally, our technique is fast as it takes only a few seconds per image. In fact, most of
the running time is spent in the mean-shift algorithm because of the high dimensionality
of the pose space.We believe that dimensionality reduction techniques would allow our
approach to run in real-time and increase the robustness. As future work, we plan to
integrate this approach in a tracking framework by smoothing densities in the pose
space based on temporal priors.
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Abstract. 3D face tracking is an important component for many computer vi-
sion applications. Most state-of-the-art tracking algorithms can be characterized
as being either intensity- or feature-based. The intensity-based tracker relies on
the brightness constraint while the feature-based tracker utilizes 2D local feature
correspondences. In this paper, we propose a hybrid tracker for robust 3D face
tracking. Instead of relying on single source of information, the hybrid tracker
integrates feature correspondence and brightness constraints within a nonlinear
optimization framework. The proposed method can track the 3D face pose re-
liably in real-time. We have conducted a series of evaluations to compare the
performance of the proposed tracker with other state-of-the-art trackers. The ex-
periments consist of synthetic sequences with simulation of different environ-
mental factors, real sequences with estimated ground truth, and sequences from a
real-world HCI application. The proposed tracker is shown to be superior in both
accuracy and robustness.

1 Introduction

3D face tracking is a fundamental component for solving many computer vision prob-
lems. In this paper, we focus on tracking the 3D rigid motion of the head. The esti-
mated 3D pose is useful for various face-related applications. For example, in human-
computer interaction, the 3D pose can be used to determine a user’s attention and mental
status. For expression analysis and face recognition, the 3D head pose can be used to
stabilize the face as a preprocess. The pose estimate can also assist in 3D face recon-
struction from a monocular video.

The performance of a face tracker is affected by many factors. While higher level
choices such as whether or not to use keyframes, how many to use, and whether to
update them online can alter the accuracy (and speed) of the tracker, a more fundamental
issue is the optimization algorithm and the related objective functional. Most state-of-
the-art face tracking algorithms are affected by these three factors:

– Prior knowledge of the approximate 3D structure of the subject’s face. In [1], Fida-
leo et al. have shown that the accuracy of the underlying 3D model can dramatically
affect the tracking accuracy of a feature driven tracker. Much of the performance
difference between tracking methods can be attributed to the choice of model: pla-
nar [2], ellipse [3], cylinder [4][5], and generic face or precise geometry [6].

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 109–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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– Observed data in the 2D image. The tracker relies on this information to estimate
the head pose. This includes feature locations [6][7], intensity values in a region
[4][5][8], or estimated motion flow fields [3][9].

– The computational framework, which can be roughly divided into deterministic op-
timization and stochastic estimation [10]. For deterministic optimization methods,
an error function is defined using the observed 2D data and the corresponding es-
timated 2D data. Pose parameters are adjusted to minimize this error function. On
the other hand, stochastic estimation methods such as particle filtering define the
observation and transition density functions for tracking. Deterministic methods
are typically more computationally efficient, while stochastic methods are more
resistent to local minima.

For real-world applications, there are several constraints besides tracking accuracy,
including computational efficiency and robustness of the tracker. For real-time or in-
teractive applications, the tracker must be computationally efficient. Robustness can be
defined in several ways including robustness to noise, stability on textureless video, in-
sensitivity to illumination changes, and resistance to the expression changes or other
local non-rigid deformation. The tracker should be able to run continuously for long
sequences, requiring a mechanism to prevent drift and error accumulation.

In this paper, we propose a hybrid tracker for 3D face tracking. Instead of relying on
any single channel of information, the hybrid tracker integrates different visual cues for
face tracking. This idea is inspired by detailed comparisons between existing state-of-
the-art head trackers [5][6]. Feature-based methods such as [6][7] depend on the ability
to detect and match the same features in subsequent frames and keyframes. The quan-
tity, accuracy, and face coverage of the matches fully determines the recovered pose
quality. In contrast, intensity-based methods such as [5] do not explicitly require feature
matching, but expect brightness consistency between the same image patches in differ-
ent images to compute the implicit flow of pixels. These two methods are extensively
examined in our experiments. Empirical observation suggests that neither’s definitely
better among the existing face tracking algorithms; each tracker has its own strengths
but also comes with its weaknesses. Thus, by design, the hybrid tracker is expected to
overcome the flaws of the single channel trackers while retaining their strength. This is
clearly demonstrated in our experiments.

The rest of this paper is organized as follows: We start with the discussion and com-
parison of established ideas for intensity- and feature-based face tracking, in section 2.
Based on empirical observation, a hybrid tracking algorithm is proposed. The details of
this algorithm are illustrated in section 3. The proposed hybrid tracker, along with the
intensity- and feature-based trackers, have been examined thoroughly in various exper-
iments. These results are presented in section 4. Finally, the summary and conclusion
are given in section 5.

2 Intensity- Versus Feature-Based Tracker

This section compares intensity- and feature-based trackers. To prepare the readers, we
first review the individual algorithms. The selected representative algorithms for each
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class are [5] and [6] for the intensity- and feature-based methods, respectively. The
fundamental concepts of these trackers are summarized, and the reader is referred to
the original papers for the specific details.

2.1 Intensity-Based Tracker

The intensity-based tracker performs optimization based on the brightness constraint.
To be more specific, let μ = {tx, ty, tz, ωx, ωy, ωz}T be the motion vector specifying
the 3D head pose. Given the pose in frame t − 1, μt−1, we define an error function
Et(�μ) for �μ, the incremental pose change between frame t − 1 and t, as

Et(�μ; μt−1) =
∑

p∈Ω

‖It−1(F (p, 0; μt−1)) − It(F (p, �μ; μt−1))‖2
2 (1)

here Ω is the face region and p is the 3D position of a point on the face. F = P ◦ M ,
where M(p, �μ) will transform the 3D position of p as �μ specified and P is a weak
perspective projection. It(.) and It−1(.) are the frame t and t − 1 respectively.

This error function measures the intensity difference between the previous frame
and the transformed current frame. If the intensity consistency is maintained and the
noise of intensity is Gaussian distributed, the minimum of this 2-norm error function
is guaranteed to be the optimal solution. Thus, by minimizing this error function with
respect to the 3D pose, we can estimate the change of 3D pose and recover the current
pose.

Off-line information can also be integrated into the optimization similar to Vacchetti
et al. [6]. The error function Ek(�μ):

Ek(�μ; μt−1) =
Nk∑

i=1

αi

⎡

⎣
∑

p∈Ω

‖Ii(F (p, 0; μi)) − It(F (p, �μ; μt−1))‖2
2

⎤

⎦ (2)

is defined between the current frame and the keyframes. Nk is the number of keyframes.
Ii(.) and μi are the frame and pose of the ith keyframe. This error function can use both
off-line or on-line generated keyframes for estimating the head pose.

A regularization term

Er(�μ; μt−1) =
∑

p∈Ω

‖F (p, 0; μt−1) − F (p, �μ; μt−1)‖2
2 (3)

can also be included to impose a smoothness constraint over the estimated motion vec-
tor.

The final error function for optimization is combination of (1), (2), and (3):

Eint = Et + λkEk + λrEr (4)

where λk and λr are the weighting constants. This is a nonlinear optimization problem
and the iteratively reweighted least square is applied.
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2.2 Feature-Based Tracker

The feature-based tracker minimizes the reprojection error of a set of 2D and 3D points
matched between frames. A keyframe in [6] consists of a set of 2D feature locations
detected on the face with a Harris corner detector and their 3D positions estimated by
back-projecting onto a registered 3D tracking model. The keyframe accuracy is de-
pendent on both the model alignment in the keyframe image, as well as the geometric
structure of the tracking mesh. These points are matched to patches in the previous
frame and combined with keyframe points for pose estimation.

The reprojection error for the keyframe feature points is defined as:

Ek,t =
∑

p∈κ

‖mp
t − F (p, μt)‖2

2 (5)

where κ is the set of keyframe feature points, mp
t is the measured 2D feature point

corresponding to the keyframe feature point p at frame t, and F (p, μt) is the projection
of p’s 3D position using pose parameters μt.

To reduce jitter associated with single keyframe optimization, additional correspon-
dences between the current and previous frame are added to the error term:

Et =
∑

p∈κ

(
‖np

t − F (p, μt)‖2
2 + ‖np

t−1 − F (p, μt−1)‖2
2
)

(6)

where the 3D for the new points is estimated by back projection to the 3D model at the
current pose estimate.

The two terms are combined into the final error functional:

Efpt = Ek,t + Ek,t−1 + Et (7)

which is minimized using nonlinear optimization.

2.3 Comparison

Both tracking methods are model based, using an estimate of the 3D shape of the face
and its projection onto the 2D image plane to define a reprojection error functional that
is minimized using a nonlinear optimization scheme. The forms of the error functionals
are nearly identical, differing only in the input feature space on which the distance
function operates. Figure 1 illustrates the difference between these 2 trackers.

For the feature-based tracker, the reprojection error is measured as the feature dis-
tance between a set of key 2D features and their matched points in the new image.
The tracker relies on robust correspondence between 2D features in successive frames
and keyframes, and thus the effectiveness of the feature detector and the matching al-
gorithm is critical for the success of the tracker. In [6], Vacchetti et al. used the stan-
dard eigenvalue-based Harris corner detector. Using a more efficient and robust detector
should improve the feature-based tracker.

In contrast, the intensity-based tracker utilizes the brightness constraint between sim-
ilar patches in successive images and defines the error functional in terms of intensity
differences at sample points.
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Fig. 1. Difference in optimization source data for the feature-based tracker, TF , and the intensity-
based tracker, TI . Given a set of key feature points defined on a 3D model, and their projection,
TF minimizes the total distance to matched feature points in pixel space. TI computes the pose
that minimizes the total intensity difference of pixels under the feature points.

To determine the role of this input space on tracking accuracy we perform a set
of controlled experiments on synthesized motion sequences (see section 4 for details).
Feature-based methods are generally chosen for their stability under changing lighting
and other conditions, with the assumption that feature locations remain constant despite
these changes. For cases where there is insufficient texture on the face (low resolu-
tion, poor focus, etc) the accuracy of feature methods quickly degrades. Intensity-based
methods are more widely applicable and can perform well in low or high-texture cases,
however they are clearly sensitive to environmental changes. This is demonstrated em-
pirically by testing on the near-infrared sequence.

3 The Hybrid Tracker

The empirical and theoretical comparison of intensity- and feature-based tracker in-
spires the hybrid tracking algorithm. In this section, we reformulate the 3D face track-
ing problem as a multi-objective optimization problem, and present an efficient method
to solve it. The robustness of the tracker is also discussed.

3.1 Integrating Multiple Visual Cues

Integrating multiple visual cues for face tracking can be interpreted as adjusting the
3D pose to fit multiple constraints. The hybrid tracker has two objective functions with
different constraints to satisfy simultaneously: equations 4 and 7. This becomes a multi-
objective optimization problem. Scalarization is a common technique for solving multi-
objective optimization problems. The final error function is a weighted combination of
the individual error functions 4 and 7:

E = aiEint + afEfpt (8)

where ai and af are the weighting constants.
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The hybrid tracker searches for the solution to minimize equation 8. The process can
be interpreted as a nonlinear optimization based on brightness constraints, but regular-
ized with feature correspondence constraints. Ideally, these two constraints compensate
for each other’s deficiencies. The feature point correspondences restrict the space of
feasible solutions for the intensity-based optimization and helps the optimizer to escape
from local minima. The brightness constraint refines and stabilizes the feature-based
optimization. When there are not sufficient high quality feature matches, the intensity
constraint still provides adequate reliable measurement for optimization.

The convergence of feature-based optimization is much faster than intensity-based
methods due to the high dimensionality of the image data and the nature of the associ-
ated imaging function. However, when Efpt is close to its optimum, Eint still provides in-
formation to refine the registration. Therefore, an adaptive scheme is applied to choose
the weights ai and af . At the beginning of the optimization, Efpt has higher weight
and decreases when it approaches its optimum. At the same time, the weight of Eint

increases when the optimization proceed. The overall distribution of the weights is also
affected by the number of matched features. In the case of few feature correspondences,
the tracker reduces the weight of Efpt.

3.2 Efficient Solution

The computational cost of the feature-based tracker is low due to the relatively small
number of the matched features and the fast convergence of the optimization. On the
other hand, the intensity-based tracker is notorious for its high computational cost. The
standard algorithm for solving this iterative least-square problem is slow, due to the
evaluation of a large Jacobian matrix Fμ =∂F/∂μ and Hessian matrix (IuFμ)T (IuFμ),
where Iu is the gradient of the frame I . This can be accelerated using the (forward)
compositional algorithm, but the evaluation of Hessian is still required at each iteration.

Speed of the algorithm can be further improved using the inverse compositional al-
gorithm. In [11], Baker and Matthews proposed the inverse compositional algorithm
to solve the image alignment problem efficiently. The same modifications to the solver
can be made for this problem. In the inverse compositional algorithm, the Jacobian
and Hessian matrix are evaluated in a preprocessing step; only the error term is com-
puted during the optimization. To do this, the image is warped at each iteration, and
the computed transform is inverted to compose with previous transform. Here, warping
the image is equivalent to model projection. Since we know the 2D-3D correspondence
in It−1, warping It for intensity difference evaluation is achieved by projecting the 3D
model and sampling to get the intensity in It.

The inverse compositional version of the algorithm is:

– Preprocess
For Eint: Compute the gradient image, the Jacobian, and the Hessian matrix.
For Efpt: Perform feature detection on It, and feature matching between It, It−1,
and keyframes.

– Optimization
At each iteration:
1.1. Warp the face region of It to get the intensity.
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1.2. Compute the intensity difference and the weight.
2.1. Project the feature points to get the 2D position.
2.2. Compute the reprojection error and weights.
3. Solve the linear system.
4. Update the pose.

– Postprocess
Back-project the face region and feature points of It into the 3D face model.

In our experiments, for fast convergence and small face region cases, the speed of for-
ward and the inverse compositional algorithm is similar. This is true because the pre-
process of the inverse compositional algorithm takes more time. However, as the face
region or the iteration number increases, the benefit of the inverse compositional algo-
rithm becomes clear, since each iteration takes less time. Besides, this direct extension
of inverse compositional algorithm to 3D-2D alignment is not mathematically equiv-
alent to the forward compositional algorithm, as discussed in [12]. However, in our
experiments, it still shows good performance for estimating 3D head pose.

3.3 Improving the Robustness

Robustness is an important issue for 3D face tracking. We employ the m-estimator [13]
technique for optimization, which improve the robustness against outlier and noise.

Combining the feature correspondence constraint with the brightness constraint for
face tracking intrinsically improves the robustness. With the proper weighting, we over-
come the instability of the feature-based optimization due to insufficient or poor feature
matching. The sensitivity of the intensity-based optimization is also reduced, as many
plausible solutions are ruled out by the feature correspondence constraints. This is espe-
cially useful for lighting variation. Lighting changes affect the intensity on the face, and
violate the underlying brightness consistency assumption of the intensity-based tracker.
However, several existing feature detectors have been shown to be robust (or less sensi-
tive) to the illumination change, for example the SIFT detector [14]. In our implemen-
tation, we choose the SIFT detector as the underlying feature detector for its superior
performance reported in the literature. Hence, the extracted feature correspondence and
the resulting hybrid tracker is more resistent to the illumination change.

Robustness to non-rigid deformation is another issue. Since we only focus on the
rigid motion of the head, the local non-rigid motion should be regarded as the noise for
this framework. It has been shown that better results are achieved by utilizing feature-
based methods. However, it turns out that this performance gain is not strictly due to
the use of features over intensity.

A fundamental part of the feature-based tracker is the feature matching stage. During
feature matching, candidates with low region-correlation are rejected as outliers and
therefore not included in the optimization stage. The effect of this is that the majority
of feature points used in the optimization belong to rigid areas of the face. On the
other hand, the weighting scheme of the intensity-based method only considers the
pixel-wise intensity difference. This difference will be near zero under deformation, as
deformation does not alter the intensity of the single pixel. Instead, the deformation
alters the composition of local patch. Thus, it suggests the use of region-wise intensity
differences instead of pixel-wise intensity differences.
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Static

Lighting

Deformation

Fig. 2. Example synthetic sequences used for experiments. (top) Static sequence, (middle) Single
directional light source. (bottom) Deformation with face muscle system.

The intensity of each pixel is modified as the weighted average of the intensity of
its neighbors. The idea is that if this point is located in a highly deformable area, the
composition of the region changes significantly, thus the weighted average is changed.
Combining with the m-estimator technique, the proposed region-based intensity differ-
ence improves the robustness by implicit decreasing the weight of pixels in the highly
deformable area.

4 Experiments

A series of tracker evaluations are performed. The first set of experiments uses synthetic
sequences. Using synthetic sequences guarantees exact ground truth is available. We
have full control over sequence generation, and thus can isolate each factor and test
the tracker’s response. The next experiment tests the performance of the tracker in real
video sequences. The collected video sequences and one public benchmark database are
used for evaluation. In a third experiment we test the performance on textureless videos.
We have a real-world application that demands the use of a near-infrared camera. The
face tracker is used to extract head pose for human-computer interaction. We present
tracking results of the proposed hybrid tracker in this challenging setting.

The proposed tracker, and the existing state-of-the-art tracking algorithms are evalu-
ated and compared. The feature-based tracker is an implementation of [6]. The
intensity-based and hybrid tracker are C++ implementations of the methods presented
in section 2 and 3. The feature detector in the hybrid tracker is the SIFT detector [14].
For computational efficiency, a simplified SIFT detector is implemented; only a single
octave is used for feature detection.
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Fig. 3. The estimated pose of synthetic sequences. For the rows, Top: the static sequences. Mid-
dle: the lighting sequences. Bottom: the deformation sequences. For the columns, Left: the esti-
mated rotation along x-axis for pure x-axis rotation. Center: the estimated rotation along y-axis
for pure y-axis rotation. Right: the estimated rotation along z-axis for pure z-axis rotation. The
angle is averaged over all subjects, and the unit is degree.

4.1 Evaluation with Synthetic Sequences

The evaluation sequences are generated by textured 3D face models of four subjects.
These models are acquired by the FaceVision modeling system[15]. For each model,
three independent sequences of images are rendered. The first consists of pure rotation
about the X- (horizontal) axis, the second is rotation about the Y- (vertical) axis, and
the third is rotation about the Z-axis. In each case, the sequences begin with the subject
facing the camera and proceed to -15 degrees, then to 15 degrees, and return to neutral
in increments of 1 degree. A total of 60 frames are acquired for each sequence. Image
size is 640 × 480.

Synthetic perturbations are applied to the sequences to mimic variations occurring
due to lighting and facial deformation changes. The following test configurations will
be used to evaluate the tracking performance:

Static. In this case the sequences are rendered with constant ambient lighting. This
removes all factors influencing the tracking accuracy.

Lighting. We explore the robustness of the trackers in the presence of subtle lighting
changes. The models are rendered with a single directional light source.

Deformation. We explore the robustness of the tracker in response to facial deforma-
tion. A synthetic muscle system is used to deform the face mesh over the course of
the sequence. The muscles are contracted at a constant rate over the duration of the
sequence, inducing deformation in the mouth and eyebrow region (two high texture
areas on the face).
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Fig. 4. The averaged error of synthetic sequences. For the rows, Top: the static sequences. Mid-
dle: the lighting sequences. Bottom: the deformation sequences. For the columns, Left: rotation
around x-axis sequences. Center: rotation around y-axis sequences. Right: rotation around z-axis
sequences. Each figure plots the averaged error per frame for x-, y-, and z-axis angle.

Figure 2 shows some examples from the synthetic sequences. The faces in the ren-
dered sequences have a large amount of surface texture and are therefore amenable to
feature based tracking.

The proposed hybrid tracker, the intensity- and feature-based tracker are evaluated.
All trackers use the precise 3D face model to rule out the effect of model misalignment.
Figure 3 shows the averaged estimated pose compared to the ground truth, and figure 4
shows the averaged error per frame. This error measures the absolute difference between
the estimated angle and the true angle. In this evaluation, the averaged speed of the
proposed tracker is 30 frame-per-second (FPS) on a normal desktop with one Intel
XEON 2.4GHz processor.

From this evaluation, we can see that these three trackers are all comparable. In
most cases, the hybrid tracker is consistently better than the other two, especially on
the rotation axis. In some cases, the hybrid tracker is worse than the other two, but the
difference is marginal and not statistically significant.

Static. All trackers perform very well, despite the different optimization functionals.
Lighting. The result is somewhat unintuitive, as we would expect the intensity-based

tracker’s performance to degrade. However, the performance difference is very mar-
ginal, since the points are weighted high in high gradient regions.

Deformation. All trackers perform worse than the optimal cases, but the accuracy is
still acceptable. From figure 3, as deformation increases with time the accuracy of
all methods declines. The intensity-based method is only slightly worse than the
feature-based method, since the usage of the region-based difference compensates
for the outliers and improves the robustness.
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Fig. 5. Evaluation on the BU database. The top rows show some examples from the tracker and the
last row show the estimated roll, yaw, and pitch compared with the ground truth from magnetic
tracker. The result is for the ”jam5.avi” sequence in the uniform lighting class of the BU database.

4.2 Evaluation with Real Sequences

The proposed tracker is also evaluated with many real sequences. One problem of eval-
uating with real sequences is the lack of ground truth. Only “estimated ground truth” is
available. In the literature, several methods are used to estimate the ground truth, such
as with a magnetic tracker or off-line bundle adjustment. We perform the evaluation
with two different sets of sequences. One is collected by in our lab, and the other is
from the Boston University database [4].

The BU database contains 2 sets of sequences: uniform lighting and varying lighting.
The uniform lighting class includes 5 subjects, totalling 45 sequences. Figure 5 shows
the tracking result of the ”jam5.avi” sequence in the uniform lighting class. Overall, the
estimated pose is close to ground truth, despite the fact that there is some jitter from the
magnetic tracker.

Our sequence is captured in an indoor environment. The ground truth is estimated by
commercial bundle adjustment software[16]. These sequences contain large rotations
with the maximum angle near 40 degree. The hybrid tracker tracks the 3D pose reliably.
Figure 6 shows the tracking result of one sequence.
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Fig. 6. The estimated rotation around x-, y-, and z-axis of our sequences. The top rows show some
result of tracked sequences. The bottom row is the estimated rotation.

Fig. 7. Comparison of intensity-based tracker to hybrid tracker. The top row is the intensity tracker
and the bottom is the hybrid tracker for the same sequence. The intensity-based tracker is more
sensitive to the strong reflection.

Figure 7 shows the comparison of the hybrid tracker to the intensity-based tracker
in a strong reflection case. As shown in the figure, the drift of intensity-based tracker is
larger than the hybrid tracker.
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Fig. 8. left Theater environment for head tracking application. Subject is in nearly complete dark-
ness except for the illumination from the screen. Image courtesy of USC’s Institute for Creative
Technologies. right Images from high resolution IR camera placed below the screen.

4.3 Infrared Sequences and Application

Infrared (IR) images are commonly used in vision applications in environments where
visible light is either non-existent, highly variable, or difficult to control. Our test se-
quences are recorded in a dark, theater-like interactive virtual simulation training en-
vironment. In this environment, the only visible light comes from the reflection of a
projector image off a cylindrical screen. This illumination is generally insufficient for
a visible light camera and/or is highly variable. The tracker estimates the head pose,
indicating user’s attention and is used in a multi-modal HCI application. The theater
environment and sample IR video frames are shown in figure 8. Ground truth is not
available for this data, therefore only qualitative evaluation is made.

IR light is scattered more readily under the surface of the skin than visible light.
Micro-texture on the face is therefore lost (especially at lower resolution), making iden-
tification of stable features more difficult and error prone. Due to varying absorption
properties in different locations of the face, however, low frequency color variations
will persist which satisfy the brightness constraint.

Figure 9 shows the tracking results in this environment. It shows multiple frames
across a several minute sequence. The video is recorded at 15 FPS and its frame size is
1024× 768. In most cases, the face size is around 110× 110. The subject’s head moves
in both translation and rotation. There are also some mild expression changes (mouth
open and close), and strong reflection at some frames. In this experiment, the user is
assumed to begin in a frontal view. The tracker uses only one keyframe, the first frame.
No off-line training is involved. The proposed hybrid tracker reliably tracks the pose in
real-time with large head motion, while the feature-based tracker loses track completely
after only 3 frames. Probing deeper we see that when feature-based tracker is lost, only
a few features (1-4) are reliably matched on each frame. This exemplifies the problem
with feature-based methods on low texture images.

Another interesting observation is related to error accumulation. In figure 9, the cen-
ter column shows a frame with strong reflection coming from the subject’s glasses.
At that frame, the tracking accuracy degrades, due to the insufficient number of the
features matched in this environment. However, after the reflection disappears,
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Fig. 9. The top row shows some example frames and the bottom row shows the estimation of
the proposed tracker. The arrow indicates the direction that the user is facing. The feature-based
tracker fails completely in only 3 frames.

the tracker recovers. This demonstrates how the use of keyframes prevents error
accumulation.

5 Conclusions

We have proposed a hybrid tracking algorithm for robust real-time 3D face tracking.
Built on a nonlinear optimization framework, the tracker seamlessly integrates intensity
information and feature correspondence for 3D tracking. To improve the robustness, we
have adopted an m-estimator type scheme for optimization. Patch-based differencing
has been used to define the objective function. The inverse compositional algorithm is
presented to solve this problem efficiently. The proposed tracker tracks the 3D head pose
reliably in various environments. An extensively empirical validation and comparison
with state-of-the-art trackers conclusively demonstrates this.

In the future, we plan to use this tracker in several applications. One such application
is for HCI, such as in the theater environment presented in section 4.3. The challenge
here is stability on very long sequences. We have applied the on-line keyframe gener-
ation technique to improve the stability, but the remaining issue is the reliability of the
generated keyframe. The generated keyframe should be updated as the tracker gathers
more information about the subject’s face. Another problem is re-initialization. Expres-
sion analysis on the moving head is another future direction. The current tracker has
been shown to be robust under moderate facial deformation, thus has the potential for
facial gesture analysis. Combining with a deformable model may improve the tracking
accuracy and extend the ability to track non-rigid facial features. Other applications
include pose estimation for 3D face reconstruction.
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Abstract. This paper describes a model-assisted system for reconstruc-
tion of 3D faces from a single consumer quality camera using a structure
from motion approach. Typical multi-view stereo approaches use the
motion of a sparse set of features to compute camera pose followed by a
dense matching step to compute the final object structure. Accurate pose
estimation depends upon precise identification and matching of feature
points between images, but due to lack of texture on large areas of the
face, matching is prone to errors.

To deal with outliers in both the sparse and dense matching stages,
previous work either relies on a strong prior model for face geometry or
imposes restrictions on the camera motion. Strong prior models result in
a serious compromise in final reconstruction quality and typically bear a
signature resemblance to a generic or mean face. Model-based techniques,
while giving the appearance of face detail, in fact carry this detail over
from the model prior. Face features such as beards, moles, and other
characteristic geometry are lost. Motion restrictions such as allowing only
pure rotation are nearly impossible to satisfy by the end user, especially
with a handheld camera.

We significantly improve the robustness and flexibility of existing
monocular face reconstruction techniques by introducing a deformable
generic face model only at the pose estimation, face segmentation, and
preprocessing stages. To preserve data fidelity in the final reconstruction,
this generic model is discarded completely and dense matching outliers
are removed using tensor voting: a purely data-driven technique. Results
are shown from a complete end to end system.

1 Introduction

3D face models are important for a wide array of applications including sur-
veillance, computer gaming, military simulation, virtual teleconferencing/chat,
and surgical simulation. Most existing techniques for face reconstruction require
special hardware or multiple cameras to create faces which prevents wide-spread
adoption. This is unfortunate, as the rapidly increasing quality of consumer digi-
tal cameras has reduced the need for such specialized equipment for high quality
reconstruction of faces.

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 124–138, 2007.
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The goal of this work is to reconstruct high accuracy 3D geometry of hu-
man faces from 2D video sequences acquired from a single, consumer quality,
monocular, video camera. Performing reconstruction from a single camera en-
ables leveraging of existing ubiquitous surveillance and web camera infrastruc-
ture for security and entertainment purposes.

Structure from motion has been used in single camera architectural and ter-
rain modeling with great success [1]. These domains tend to have many distin-
guishable features that simplify the pose estimation and dense reconstruction
phases. Reconstruction of faces from images is challenging as the face has very
little texture outside of the eye, eyebrow, and mouth region. The image may
be corrupted by noise, shadows, or other environmental aberrations which, com-
bined with the lack of texture, makes it difficult to identify precise feature points
required for accurate pose estimation. Inaccuracies in pose estimation translate
into geometric distortions and noise.

Existing model-based work on single camera face reconstruction utilizes very
strong prior knowledge of the structure and appearance of faces to constrain the
reconstruction [2][3][4][5][6]. However, by imposing these constraints, these meth-
ods do not capture the subtle details present in the original face that are critical
for recognition. Data-driven approaches can capture more subtle details from
faces by disregarding strong face model constraints and relying strictly on the
observed data [7][1]. However, rejecting a regularizing model can be dangerous
due to more prevalent outliers on faces with limited texture.

It turns out that the use of a generic model for face reconstruction is not
always bad, as long as it is used at the appropriate points in the reconstruction
process.

We make two significant contributions to face reconstruction literature. First,
it was observed in [8][9] that introduction of prior knowledge of the face can
significantly improve the stability and accuracy of face pose estimation. We use
this knowledge by incorporating the results of a model-based face tracker into
the pose estimation stage. To prevent bias in the final face geometry, and to
allow for reconstruction of face features such as beards that are not in the model
prior, this model is discarded after pose estimation. Second, to deal with outliers
in the dense reconstruction phase, we use tensor voting to perform model-free
outlier rejection. Both of these contributions result in significant improvement
of face reconstruction generality and robustness over existing methods.

This paper describes the entire end-to-end reconstruction system. It should
be noted that, while this paper focuses on faces, the technique could be easily
extended to reconstruction of other textured surfaces for which a rough initial
estimate of the object’s structure is available.

2 Previous Work

Several active and passive techniques exist for creating 3D faces. The majority of
past work has required the use of specialized hardware, e.g. laser range finders,
stereo camera rigs, or structured light projectors. These methods can achieve
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outstanding accuracy but the hardware requirement prevents use with existing
imaging infrastructure such as consumer digital cameras and surveillance cam-
eras. In this work we are only interested in reconstruction methods from a single
camera.

Two categories of single camera reconstruction methods exist: data-driven and
model-based. Data driven methods are largely based on textbook structure from
motion techniques [10]. An example of such an approach is the body of work by
Pollefeys et. al. for reconstruction of architectural scenes from a single moving
camera. In [1] camera pose is estimated using self calibration on a sparse set
of points matched between local image pairs. Following camera estimation and
image rectification, dense feature matching is performed to compute a dense
disparity map which may be triangulated and textured using image intensity
information. Very nice results are achieved with architectural objects having
large amounts of surface texture. The direct application of this approach to faces
is challenging as faces have large areas of relatively uniform texture and are prone
to highlights. This can result in large amounts of noise due to uncertainty in the
matching process.

Pesenti et. al. use a similar framework for reconstruction applied to faces [7].
Epipolar geometry estimation and self calibration in Pollefeys’ work is replaced
with bundle adjustment. The initial bundle configuration is derived from a sim-
plified motion model; assuming the head undergoes pure rotation in a given
triplet of frames.

A common approach to deal with geometry and pose uncertainty is to in-
troduce very strong prior models of the face. Fua uses bundle adjustment and
a strong prior to model heads [5]. The prior model is tightly integrated with
both pose estimation and modeling and hence the final reconstruction, while
visually appealing, cannot deviate far from the original model. Morphable mod-
els [3] assume the face is a linear combination of a set of basis face shapes and
appearance. The reconstruction process involves a minimization of the image
reconstruction error over basis vector weights as well as camera and lighting
parameters. Similarly, work by Shan et.al. parameterizes the face by a generic
model and a set of face “metrics” or deformation parameters [4]. DeCarlo et.al.
use optical flow and a component-wise deformable decomposition of the face to
regularize feature motion and model the face [2].

By design, these approaches are limited by the constructed parameter space.
Though modeling can be performed from single images real faces have variations
not within the space defined by the basis shapes, resulting in reconstructions
that bear a signature resemblance to a generic (or mean) face. Optimization
is performed using an image based error functional and can be very slow to
converge. To constrain the search space fewer basis shapes are used, consequently
the resulting reconstructions do not capture the subtle details present in the
original face. Recently in work by Ilic et. al., the silhouettes from multiple views
have been integrated with implicit surfaces to bias a Morphable Model solution
towards a more faithful reconstruction [11].
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The approach most similar to ours uses a multi-view stereo approach for
monocular reconstruction of faces [7]. A set of individual face scans is derived
from each pair of images in a video sequence of a user rotating his head. These
scans are merged into a single point cloud which is processed for outliers and
triangulated to form a final dense mesh. The quality of the final mesh depends on
the proper alignment of the individual scans, and hence, the proper estimation
of the camera poses in the images.

Pose estimation is dependent on precise feature matching between images.
Errors in feature matching propagate to tracking and ultimately to pose and
reconstruction errors. Pesenti et.al. determine feature candidates on each face
image with an interest operator [12] and match points with maximum corre-
lation. However, most faces have very little texture in the cheek and forehead
regions. Hence, unconstrained correlation produces egregious outliers which re-
sults in extremely poor pose estimation and reconstruction. To remove outliers
and initialize the bundle adjuster, Pesenti uses RANSAC and a pure rigid rota-
tion motion model. While this removes gross outliers, foreshortening effects and
lack of texture will still produce erroneous matches that are consistent with the
motion model, resulting in poor pose estimation and reconstruction. Further-
more, head motion is almost never purely rotational. Neglecting translation in
the motion model imposes serious constraints on the kinds of input sequences
that can be reliably reconstructed.

Undoubtedly, there are cases where these errors are small and the resulting
reconstruction is reasonable (as shown in the paper), however it is suspected
due to the fact that there was no continuation of that work in either journal or
conference publication, that these are isolated cases and in general the method
fails.

Our work relaxes the constraints imposed in [7] by borrowing principals from
the model-based literature. A strong face model is used to dramatically enhance
pose accuracy without biasing the geometry solution. Our approach also en-
ables the use of still images with wider baselines for reconstruction. Outliers in
dense matching are handled with tensor voting, a model free surface extraction
technique, which only becomes possible after accurate pose estimation.

Fig. 1. The problem of reconstructing a single rigid object (static or mobile) with a
single camera (static or mobile) can be equivalently modeled as reconstruction from
multiple static cameras with the same relative external coordinate system
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3 Reconstruction Overview

Given a sequence of images of the face I = {I0, I1...Ik} in different poses our goal
is to transform this sequence into an accurate textured 3D model M . Though
not required, for simplicity we will assume that the subject’s face is frontal in
frame I0, and that indices k are ordered in time.

It is assumed that the subject remains expressionless through the duration of
the sequence, providing a rigid surface for reconstruction. Given these parameters
and constraints, the “moving head - static camera” problem can be modeled
equivalently as an array of multiple static cameras placed around a static object,
each acquiring a different view of the face as shown in figure 1.

Figure 2 shows a diagram of the reconstruction process described in detail in
this document. Novel contributions are highlighted. We begin with an input video
sequence of a subject. It is presumed that multiple views of the subject’s head are
present in the sequence: as much coverage as desired for the final reconstruction.
We utilize a 3D face tracking algorithm to derive an initial head pose estimate
and mask for the face. Optimal views are selected from the set of images and
passed to a sparse feature tracking module. Sparse feature tracking produces a set
of feature correspondences for each successive image pair. Global optimization
is performed over the entire sequence of feature points and cameras to refine the
tracking camera estimate and compute the 3D structure at the sparse feature
locations.

The optimized camera positions are used to rectify pairs of images, constrain-
ing the search space for corresponding feature points to a horizontal scanline in
the paired image. Dense feature matching is performed across pairs and corre-
spondences are reconstructed by triangulation using the optimized camera poses
resulting in a dense 3D point cloud. Point clouds corresponding to individual
pairs are merged into a single cloud and outliers are removed.

A connected surface is fit to the final cleaned point cloud and the face texture
is acquired from a frontal image. The final result is a clean 3D mesh that is ready
to be used for animation, recognition, or rendering.

4 Model-Based Pose Estimation

In the interest of remaining purely data-driven, Pesenti et.al. assume the head
in the video sequence undergoes pure rotation and apply a simple motion con-
straint at the sparse feature matching stage. These constraints are necessary to
achieve a decent pose estimate to initialize the bundle adjustment algorithm.
Unfortunately, these restrictions are much too prohibitive for a robust system.

We make the observation that we can reap the benefits of a geometric model
at the pose estimation stage without biasing the shape at the final reconstruction
stage. Therefore, in our system, the initial pose estimate is obtained from the
3D head tracker developed by Vacchetti et.al. [9]. This tracker relies heavily on
an approximate generic model of the subject’s face.
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Fig. 2. Overview of the reconstruction system presented in this paper. Highlighted
modules are novel contributions.

4.1 Tracking

This section presents a brief overview of the tracking approach, but the reader
is referred to the original paper [9] for details.

In the initial frame I0 a 3D face model is manually aligned to the face. This
establishes a reference keyframe consisting of a set of 2d feature locations de-
tected on the face with a Harris corner detector and their 3D positions estimated
by back-projecting onto the model. The keyframe accuracy is dependent on both
the model alignment in the keyframe image, as well as the geometric structure
of the tracking mesh.

As the subject rotates her head, there may be several newly detected feature
points not present in any keyframe that are useful to determine inter-frame
motion. These points are matched to patches in the previous frame and combined
with keyframe points for pose estimation.

The current head pose estimate for It serves as the starting point for a local
bundle adjustment. Classical bundle adjustment is typically a time consuming
process, even when a reasonable estimate of camera and 3D parameters is pro-
vided. However, by constraining the 3D points to lie on the surface of the tracking
model, the method is modified to run in real-time without substantial sacrifice
in accuracy. When an accurate 3D model of the tracked object is used, reported
accuracy approaches that of commercial batch processing bundle adjustment
packages requiring several minutes per frame.
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4.2 Model-Assisted Sparse Feature Matching

We use the result of the model-based tracker to improve the number and accu-
racy of sparse feature points used in the bundle adjustment stage. Indeed, the
accuracy of sparse feature matching is critical as errors in feature matching will
propagate into the bundle solution. In general, this problem is difficult, as local
image patches may resemble more than one patch in another image, especially
in large textureless areas. Our approach utilizes salient feature points and model
constraints to converge on a set of accurate feature matches.

Extraction of the feature matches is divided into 2 parts: feature matching
and feature chaining.

Fig. 3. (top) Model-based face tracking. (bottom) Model assisted feature matching.

Feature matching is performed on consecutive pairs of images It and It+1.
Feature points are first detected in each image using a Harris corner detector.
A sample window is extracted at the feature location x. The predicted match
location of x in the corresponding frame is computed using the transfer function

x′ = T (x, Pt, Pt+1, X) (1)

This function is illustrated in Figure 3. T uses Pt to back-project x to the the
3D generic model M . The corresponding 3D point X is then projected to the It+1
using Pt+1. This new 2D location x′ is the predicted feature location. Note that
if we were to use this location as the feature match, the resulting pose estimate
would be identical to the tracking estimate, when we know to be imprecise.

Instead, a search area is defined around the predicted location x′. In this area,
we find the best correspondence candidate c via normalized cross correlation.
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If the match score is below a threshold τ , the match is rejected. In practice
we set τ = .9 and the search area to be 21x21 to ensure only high quality
correspondences. Features are chained across image pairs.

4.3 View Selection

The bundle adjustment process is sensitive to the angular baseline between im-
ages as well as the number of matched feature points in each frame. The base-
line between virtual camera locations is directly related to the uncertainty of
the reconstruction estimate [10]. A narrow baseline increases measurement un-
certainty but ensures visibility of points in multiple images. A wide baseline
decreases measurement uncertainty but increases the chances that a point is
occluded.

In practice, we select an angular baseline between 8 and 15 degrees and select
frames with at least 6 points matched across a minimum of 3 frames (determined
experimentally).

4.4 Bundle Adjustment and Bundle Surface Extraction

The tracker provides a rough estimate of the head pose. However, to accommo-
date the real-time constraint, only current, previous, and key frames are used
in the optimization. This narrow view range causes misalignment between pairs
of images at wider baselines and hence distortion in the reconstruction. We
therefore introduce an offline pose estimation stage that considers the full set of
views.

Given the 2D feature chains identified in section 4.2 we perform a global
bundle adjustment to refine the camera poses using the tracking estimate as a
starting point for the optimization [13].

The 3D point cloud resulting from bundle adjustment is a coarse estimate
of the structure of the subject’s face. We create an interpolated version of this
surface to filter the dense face reconstruction using scattered data interpolation
via radial basis functions [14]. We refer to the resulting interpolated model as
the bundle surface.

The refined camera poses are used to rectify the images to assist in the dense
feature matching stage. We perform rectification using standard computer vision
techniques [10].

5 Model-Assisted Face Segmentation

Using the model based face tracker, we do not require the face to be in the
foreground as in [7]. The region under the tracking model provides a good ap-
proximation of the face area and is used to define a binary reconstruction mask
where white pixels are to be reconstructed and black omitted. The initial mask
is defined by the entire area under the tracking model as shown.
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5.1 Skin Mask

Due to alignment problems, the reconstruction mask derived from the tracking
model may not cover the entire face region. Too little coverage may be sufficient
for recognition applications, however for animation a complete head model is
generally required. If the mask is too large, non-face pixels may interfere with
the reconstruction process.

We refine the initial segmentation by segmenting the skin region belonging to
the face; learning the skin color distribution and classifying skin pixels.

We make the basic assumption that skin color is largely constant over the face
with most variations occuring due to lighting. The skin color sample is defined
by the area under the tracking mask. Separation of color from illumination is
difficult in the standard RGB space. We therefore convert the image window to
HSV space, and discard all but the hue component. The majority of the image
under the face rectangle is skin and therefore the strongest mode of a histogram
plot of the hue data will belong to the skin color.

A Gaussian model is fit to the data. Each pixel in the image is then classified
as skin/non-skin with respect to this model using a fixed threshold. The binary
face mask is augmented with new skin pixels.

This process generally performs quite well, but may fail if the image contains
multiple overlapping faces or areas with color distributions resembling skin. In
this case, the initial reconstruction mask may be used.

5.2 Highlight Removal

Specular highlights on the face cause problems in the reconstruction. The center
of the highlights saturate and hence obscure any texture in the area. As the face
rotates, the highlights shift, and cause errors in matching along the highlight
border. Saturated areas can be detected by analyzing the variance of a window
of pixels. If the variance is below a threshold, this window is removed from
the reconstruction mask M . To deal with highlight boundaries which may not
saturate, the highlight mask is dilated.

5.3 View Angle Filtering

Due to foreshortening effects on face texture, surfaces nearly orthogonal to the
camera view ray will have greater matching uncertainty. We use the normal map
derived from the tracking model to compute this angle and reject points whose
approximated normal is greater than 50 degrees from the view ray. Each mask
is combined to produce the final reconstruction mask as shown in Figure 4.

6 Model-Free Dense Reconstruction

6.1 Dense Feature Matching

Dense feature matching determines a dense set of corresponding points in each
pair of rectified images. The matching is restricted to the area covered by the
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Fig. 4. (top) Input image, aligned tracking mask, normal map. (bottom) Initial recon-
struction mask, highlight mask, and final combined reconstruction mask.

reconstruction mask from Section 5. For each pixel in one image, a template is
extracted using a fixed window size. This template is matched along the cor-
responding epipolar line in the paired image. A minimum correlation threshold
and restricted disparity range suitable for faces is used to reduce the number
of spurious matches. Multiple candidate matches can be retained, but locations
with flat correlation plots (no obvious peak) are rejected, as this is an indicator
of a textureless, or possibly occluded region.

The result of the matching process is a disparity volume where each (x,y,d)
value maps a pixel (x,y) in one rectified image to a pixel (x+d,y) in the paired
image.

6.2 3D from Disparity

The known camera poses allow us to convert each disparity value to a true
3D point by triangulation. Each disparity pixel is transformed to the original
image space using the inverse of the rectifying transform. The 3D location of
each match is given by the intersection of the rays passing through the camera
optical centers and the corresponding feature matches in the image planes. In
practice, due to imperfect feature matching and camera estimates, these lines
will not intersect exactly. We therefore compute the 3D point that minimizes
the orthogonal distance to the two rays [10].

6.3 Outlier Rejection

Tensor Voting. Errors in feature matching result in considerable reconstruc-
tion noise. If the noise is uncorrelated within and between views, it will appear
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Fig. 5. Tensor Voting Outlier rejection. (left) original points. (middle) Outliers shown
in red. (right) 3D points after tensor voting outlier rejection.

as sparse, high frequency variations in the 3D structure. Correct matches will,
however, be correlated between views due to the smoothness and continuity of
face structure. We use tensor voting to uncover this correlation structure and
reject outliers.

Tensor voting is a technique used to uncover the intrinsic dimensionality of
data in arbitrary dimensional spaces. Data points share information with their
neighbors encoding their saliency in a given dimension. In 3D tensor voting each
3D point can be encoded as a ball tensor (no orientation preference) or stick
tensor (if normal information at the point is available). In the voting process,
orientation and structural saliency information (dimensionality) are shared with
neighboring points. Neighbors with similar structure reinforce each other with
the amount of structural reinforcement defined by the initial structural saliency.

When the individual point clouds are integrated, points on face surface are
correlated and will reinforce each other during tensor voting. Incorrect matches
due to sensor noise, lack of texture, or other artifacts will result in uncorrelated
noise in the 3d structure. These points will have very low surface saliency and are
removed by simple thresholding. This approach is similar to that of Mordohai
et. al. for denoising of disparity maps [15].

In practice, a good initial estimate of point normals is preferred to blindly en-
coding points as ball tensors. We therefore use the bundle surface to approximate
the point normals. Fixing the normal as the first eigenvector in a 3x3 eigensys-
tem, the remaining basis vectors are computed using singular value decomposi-
tion (SVD). Initial surface saliency (defined by the difference in magnitude of
the first two eigenvectors) is set uniformly for all points initially.

As the 3D from the bundle adjustment is a very accurate sparse estimate of
the face structure, these points are added to the tensor voting point set with
boosted surface saliency.

After two passes of tensor voting, points with low surface saliency are removed,
leaving a dense cloud of points distributed across the surface of the face as shown
in Figure 5.
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Fig. 6. Reconstruction results. (top) Reconstruction from 5 digital still images shown
above models. (middle) Reconstruction from video sequence. (bottom) Reconstruction
outdoors at a distance of 15 feet.

Tensor voting is computationally intensive in software. The computation time
grows nearly linearly with point set size, assuming a local voting field. This
implies that each reconstruction pair adds a constant amount of computational
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effort. With an average cost of 30 sec. per pair (reconstructing 50k points) this
cost can become prohibitive for more interactive applications.

If constant computation time is desired, the final point cloud may be quantized
first by voxelizing the set then reducing each voxel to a single point. Tensor voting
may then be performed on the quantized set. The speed and accuracy tradeoff
may be adjusted by altering the quantization resolution. In practice we break
the face volume into 106 voxels and take the mean value for each voxel. This
results in a set of < 20k 3D points which can be processed by the tensor voting
module in less than 15 seconds.

Voxel filtering. Tensor voting removes uncorrelated outliers, however there are
many cases where correlated artifacts can arise such as on the boundary of the
face or shifting highlights. The bundle surface provides a strong constraint on
the allowable 3D computed in the dense reconstruction; the computed structure
should not deviate far from the bundle derived structure. This structure is used
to filter the data by voxelizing the interpolated bundle structure and rejecting
data at a predefined distance from the bundle voxels. It should be noted that
this is not the same as using a generic model constraint, as the bundle structure
can be considered optimal based on the observed data.

7 Meshing

It is difficult to visualize the reconstruction results from the point clouds alone,
therefore the 3D point cloud is converted to a textured 3D mesh using a standard
graphics technique. The point cloud is projected to the surface of a cylinder
whose axis is aligned with the axis passing through the center of the head with
the cylinder axis defined by the tracking model.. The points are triangulated in
the 2D cylindrical space. Texture is acquired by projecting the resulting triangles
to the image using the optimized camera pose. High frequency noise in the mesh
is eliminated using a volume preserving diffusion technique by Desbrun et.al. [16].

8 Results

Figure 6 shows results from the reconstruction system. We demonstrate the ro-
bustness and flexibility of the system in different environments using different
camera hardware. All images used for reconstruction are 640x480 pixels. Models
in the center row were taken in a standard office environment at a distance of
roughly 3 feet using a PointGrey Dragonfly video camera. Our system is not
limited to video sequences. The model at the top left was created using a set
of 6 still images from a Canon Powershot S300 digital camera in a similar envi-
ronment. We are also not limited to indoor sequences with short focal lengths.
The model at the bottom was created outdoors at a distance of 15 feet. Note the
ability to capture the prominent facial hair on the subject. Model based methods
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completely fail in such cases as these personalized variations are difficult to
embed in the model space.

9 Conclusion

We have demonstrated a robust system for reconstruction of faces from a single
camera. We make a fundamental observation that introduction of prior face
knowledge at the pose estimation stage can significantly improve reconstruction
results without biasing the geometry solution towards this prior. Performing
outlier rejection using tensor voting, a purely data driven method, preserves the
subtle details present in the subject’s face. The use of the model based face
tracker relaxes the constraints on the subject’s motion and enables the use of
both video sequences with small angular baseline between images, as well as a
set of still images with significantly larger baselines.
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Abstract. This paper introduces a novel method of single camera gait recons- 
truction which is independent of the walking direction and of the camera 
parameters. Recognizing people by gait has unique advantages with respect to 
other biometric techniques: the identification of the walking subject is 
completely unobtrusive and the identification can be achieved at distance. 
Recently much research has been conducted into the recognition of fronto-
parallel gait. The proposed method relies on the very nature of walking to 
achieve the independence from walking direction. Three major assumptions 
have been done: human gait is cyclic; the distances between the bone joints are 
invariant during the execution of the movement; and the articulated leg motion 
is approximately planar, since almost all of the perceived motion is contained 
within a single limb swing plane. The method has been tested on several 
subjects walking freely along six different directions in a small enclosed area. 
The results show that recognition can be achieved without calibration and 
without dependence on view direction. The obtained results are particularly 
encouraging for future system development and for its application in real 
surveillance scenarios.  
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1   Introduction 

Many biometrics require either a subject’s cooperation or contact for data acquisition; 
vision-based systems usually require a chosen viewpoint. These methods cannot 
reliably recognize non cooperating individuals at a distance in the real world under 
changing environmental conditions. Gait, which concerns recognizing individuals by 
the way they walk, is a relatively new biometric without these disadvantages [1], [2]. 
There is a rich literature, including medical and psychological studies, indicating the 
potential for gait in personal identification [3], [4]. Moreover, early medical studies 
suggest that if all gait movements are considered then gait is unique [5].  

There is a rich literature of various gait recognition techniques that can be broadly 
divided as model-based and model-free approaches. Model based approaches [6], [7] 
aim to derive the movement of the torso and/or the legs, recovering explicit features 
describing gait dynamics of joint angles. On the other hand, model-free approaches 
are mainly silhouette-based. The silhouette approaches [8], [9] characterize body 
movement by the statistics of the patterns produced by walking. These patterns 
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capture both the static and dynamic properties of body shape. A rich variety of data 
has been collected for evaluation. The widely used and compared databases on gait 
recognition include: the University of Maryland’s surveillance data [10]; the 
University of South Florida’s outdoor data [11]; Carnegie Mellon University’s multi-
view indoor data [12]; and the University of Southampton’s data [13]. The majority of 
methods and databases found in the literature thus concern a person walking in fronto-
parallel [6], [7], [9] or the use of several digital cameras acquiring the movement [7], 
[8] and thus the knowledge of the calibration parameters. 

It appears obvious that for biometric aims the recognition system must be invariant 
to subject’s pose or be able to reconstruct the canonical fronto-parallel view of the 
gait motion. Recently, in fact, novel approaches on biometrics based on gait are 
oriented towards synthesizing fronto-parallel views by use of structure from motion, 
but require some information about camera calibration [14], [15]. Moreover, 
considering the recent applications of gait recognition in criminal investigation, like 
the case of the murderer of Swedish Foreign Minister Anna Lindh [16], usually there 
is no access to the camera and generally only the recorded video sequences are 
available [17], [18]. Therefore, view-point independent reconstruction of gait would 
have a major impact on the viability of gait-based biometrics and a system for 
achieving this purpose is particularly attractive. 

This paper presents a new method to reconstruct gait motion from monocular 
image sequences by taking advantage of the constraints of articulated limb motions. 
No prior knowledge of the camera calibration is necessary and the limbs landmark 
points are extracted over all frames in the sequence by tracking reflective markers on 
subject’s legs. This work is part of a wider project (Fig. 1) where the single view 
human identification based on gait will be completely markerless. Therefore, the aim 
of this paper is to propose a novel method for reconstructing the gait parameters 
independently from the view-point and the subject pose. 

 

Fig. 1. Flow diagram of the overall project 

2   Theory 

Walking has been widely studied in medical research and biomechanics [19] and the 
characteristics of the gait cycle for subjects without any pathology are well-known. 
Each leg has two distinct periods: a stance phase, when the foot is in contact with the 
floor; and a swing phase, when the foot is off the floor moving forward to the next 
step. The time interval between successive instances of initial foot-to-floor contact 
‘heel strike’ for the same foot is the gait cycle. 
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The proposed method for a pose invariant gait analysis is based on three main 
assumptions: the nature of human gait is cyclic; the distances between the bone joints 
are invariant during the execution of the movement; and the articulated leg motion is 
approximately planar, since almost all of the perceived motion is contained within a 
single limb swing plane. 

Considering a subject walking along a straight line, the multiple periods of linear 
gait motion appear analogous to a single period viewed from many cameras related by 
linear translation. Following this rationale, the positions of the points of interest, i.e. 
the leg joints, lie in an auto-epipolar configuration consistent with the imaged motion 
direction. The epipole is thus estimated by computing the intersection of the set of 
lines formed by linking the correspondent points of interest in each phase of the gait 
cycle. In order to find these correspondences, the gait periodicity is calculated by 
applying the stereopsis transformation that maps the epipole e to the ideal point 
[1,0,0]T and then by computing the cost based on dot product between matching limb 
segment vectors.  

After estimating the periodicity of gait, assuming linear velocity between 
consecutive frames, the set of points of interest are recomputed in order to lie on 
straight lines starting from the epipole. At first the set of points is mapped to the unit 
square x0=Knx with the matrix Kn. Similarly the epipole e0=Kne is re-normalized to 
the unit norm ║e0║=1. Subsequently, the optimal points are found by estimating the 
positions ix  that lie on the epipolar line and that satisfies the condition 

[ ]T
i 0 ie 0× =x x  (1) 

Therefore the back projected rays, formed from a set of optimal points, intersect in a 
single worldspace point: the epipole.  

The back projection of all sets of points generates the cluster of 3D points for an 
assumed single period of reconstructed gait motion. The Direct Linear Transform, 
DLT [20], is thus used in order to triangulate each worldspace point X 

[ ]( ) 0k k× ⋅ =x P X  (2) 

with the set of camera projection matrices 

T
0| -k k⎡ ⎤= ⋅⎣ ⎦eP R e  (3) 

where kx  is the image of the worldspace point X in the kth period image, Re is the 3 

by 3 rotation matrix that aligns the epipolar vector with the X (horizontal) axis, and k 
is an integer describing the periodicity of the subject’s translation.  

Considering the assumption that the articulated leg motion is approximately planar 
the 3D limb points can be reasonably fitted to two planes. Since the epipolar vector is 
aligned with the X axis, the ideal point [1,0,0,0]T do lie on each of the worldspace 
planes. Therefore, the pencil of planes that intersect this ideal point have the form 
p=(0,v2,v3,v4)

T. Consequently the problem is reduced to finding two lines within the 
YZ plane cross section data.  
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After computing the mean [y,z]T of the point distribution, the translation Ht that 
maps this point to the origin is applied. The two cross section plane lines 

T ' ' ' T
1 2 3 4 2 2 3 4l =[ v ,v ,v ]  and l =[ v ,v ,v ]  are then achieved by orthogonal regression and 

then aligned parallel with the Y (vertical) axis by applying a rotation Hr. The 
intersection point of the two lines is then called u and is given by the cross product 
between the two lines. 

Consequently, the pair of transformed lines are mapped to '
i il = lrH  and the rotation 

matrix Hr and the perspective transformation Hα 

1 0 0

0 1 0

0 1
α

α

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

H  (4) 

are applied to the point u' in order to transform it to the ideal point [1,0,0]T.  
Since u' lies on the Y axis and has the form [y,0,w]T, the transformation Hαu' gives 

α=-w/y and the corresponding line mapping Hαli
' effectively zeros the first 

component of the two normal lines. Since the lines are parallels, they are normalized 

'' T '' T
l 1 2 2l (0,1, )         l (0,1, )c c= − = −  (5) 

so that is it possible to find the point (c1,c2) of intersection with Z (depth) axis. A 
further similarity transform Hs that translates the midpoint (c2+c1)/2 to the origin and 
scales in the Z direction to rectify the lines to the form  Tl=[ 0,1, 1]±  is then applied.  

The translation by ±1 mapping the selected set of points onto the z=0 plane is then 
computed with the matrix Hβ. The combined set of transformations thus forms the 
limb plane transformation Hv= Hβ Hs Hα Hr Ht. In order to change the matrix order, a 
similar set of transformation is constructed: 

Hv= Hβ Hα (Hα
−1 Hs Hα) Hr Ht 

Hv= Hβ Hα Hs
’ Hr Ht 

(6) 

Therefore, the projection transform mapping the back projected points into the image 
can be decomposed as: 

T '
-1
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( ) | e
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where 
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The corresponding transformation of worldspace points (u,v,0,w)T into the image is 
given by 

( )T
, ,u v w= ⋅'

px H  (9) 

where 

( ) ( )' ' ' '
2 4 4 3m m k m k mα β⎡ ⎤= − ⋅ − ⋅ − ⋅ − ⋅⎣ ⎦

' ' '
pH e e e  (10) 

with 

' T T T[1,0,0]i im m= ='
e eR e R  (11) 

Finally the sets of optimal z=0 plane points is found by solution of the 

( )'
,β ( , ) 0k k β× =px H w  (12) 

for each point w in order to minimize the reprojection error. 
Structure on the z=0 plane has been recovered up to an affine ambiguity Hμ that 

maps the imaged circular points (1,μ ± i λ,0)T back to their canonical positions 
(1,±i,0) T: 
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For estimating the metric structure, the lengths of the articulated limbs is assumed to 
be known and constant over all the frames. Thus the squared distance between two 
points x0 and x1 can be written  

2 Td = Δx Δx  (14) 

where 

[ ]T

1 0 1 0= ,u u v v− −Δx  (15) 

If Δx1 and Δx2 are the pose difference vectors for a limb segment at two consecutive 
frames, then the equal limb length constraint can be written 

T T T T=1 1 2 2Δx H HΔx Δx H HΔx  (16) 

Therefore, writing [ ],i ix yδ δ=iΔx  and the element of the matrix T=M H H  as 

[ ]T

11 12 22m= M ,M ,M , the equation is 



144 M. Goffredo et al. 

( )2 2 2 2 2 2 2 2
1 2 1 1 2 2 1 22 m 0x x x y x y y yδ δ δ δ δ δ δ δ− ⋅ − − =  (17) 

Since m is defined up to scale then a minimum of two corresponding pose constr- 
aints are required. All constrains formed from all sets of combinations of same limb 
frame poses are stacked on each swing plane. 

The rectification matrix Hμ is formed from the extracted parameters of HTH, where 
μ=-m2/m3 and  

21

3

m
mλ μ= −  (18) 

The ideal epipole [1,0,0]T is then mapped by Hμ to [1,-μ/λ,0]T so a rotation Hr is 
necessary in order to align the epipole back along the X axis such that Ha=HrHμ is the 
affine transform that recovers metric angles and length ratios on both planes. 
Points on the metric plane w are then mapped into the image as: 

( )-1= =p a ax H H H u Hw  (19) 

Scaling is then applied to both planes in order to transform each first limb segment to 
unit length. The mean set of limb lengths for both planes is estimated as d, d'. These 
lengths are related by the inter-plane scaling: di=τdi

'. A minimal solution to this trivial 
set of linear equations requires at least one valid length correspondence within the set 
of limb segments. With Hτ now known the optimal first limb segment length D1 on 
the first plane can be evaluated. The scaling transform Hs that maps D1 to the unit 
length and update both sets of points and projection homographies is then calculated. 

-1 1 2
3

-1 -1 '1 2
3

'1 2
3

p p
p

s s

p p
p

s s

p p
p

s s

τ τ

τ

⎡ ⎤= = ⎢ ⎥⎣ ⎦
⎡ ⎤= ⋅ ⋅⎢ ⎥⎣ ⎦

⎡ ⎤= ⋅⎢ ⎥⎣ ⎦

1 p s

2 τ s

2

H H H

H H H

H

 (20) 

where 

' '
2 2 4= p m mα− ⋅  

' '
3 4 3 p m m= −  
' ' '
3 4 3 p m m= +  

(21) 

defined in equation 10. 
The true metric structure wi is then recomputed from the real normalized image 

points xi' by applying the inverse mappings  
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-1 -1      = =' ' '
i 1 i i 2 iw H x w H x  (21) 

Therefore, the four-fold X,Y reflection ambiguity of the metric plane is resolved by 
consideration of the gross spatiotemporal motion structure. Two smoothed data 
vectors 0u% , '

0u%  generated from the mean X coordinate positions of limb points over a 

centred 3 frame window, are computed and fitted to a linear velocity model with a 
pair of simultaneous equations: 

' '
0 0     i x i xu v i u u v i u= ⋅ + = ⋅ +% %  (22) 

The gait sequences is then normalized in order to emulate a left to right walk, so 
ensureing that vx is positive by applying a reflection about the Y axis and updating 
both points wi, wi

' and the homographies. The reflection about the X axis, to ensure 
that the sky is upward, is determined from the Y coordinate ordering of the means of 
each limb point over all frames. The only remaining ambiguity is then the translation 
between both sets of plane points. 

Since normal gait is bilaterally symmetric with a half phase shift, for each limb 
segment both plane limb angle sets and their corresponding time sample vectors are 
computed. Therefore, the angle vectors can be concatenated as A=[a|a'] and the time 
sample vector as S=[t|t'+T/2]. 

With the knowledge of the normalized limb lengths D both sets of origin limb 
points o, o' can be found by back substitution. We then compute two vectors of 
smoothed X origin limb data generated from the mean positions over a centred 3 
frame window, and fit the linear velocity model to the pair of simultaneous equations 
in t. This gives a reasonable estimate of the linear velocity component and initial X 
offset points [u0,u0'] of gait on the metric plane. We now compute a partitioned 
bilateral Fourier series representation of the origin point displacement function with 
sample data o, o' and fixed fundamental frequency f0 
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The initial first harmonic is firstly computed by partitioning the parameter vector 
P1= [vx,A1, φ1 | u0, u0

’]T. 
The estimation of P1 is then used to bootstrap the full partitioned parameterization: 

'
1, 1 0 0, ,..., , | ,x n nv A A u uφ φ⎡ ⎤= ⎣ ⎦P  (24) 

The Y component origin limb point displacement function is similar, though vy is 
held fixed (zero). Both are computed using a partitioned Levenberg-Marquardt 
algorithm [21] with fixed fundamental frequency f0. The translations Ho, Ho

' then map 
the starting origin limb point displacements [u0, v0]

T , [u0
’, v0

’]T to the origin. 
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We finally apply the inverse normalization transform to the updated homography 
mappings Kn

−1Hi
' in order to map the metric plane points to image points: 

[ ] ( )
( )

1 1 2 3 0

'
2 1 2 3 0

( ) : , , , ,

( ) : , , , ,2

x y

x y

t h h h g t f V V F

Tt h h h g t f V V F

=
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x D

x D
 (25) 

where g(t) is the bilateral Fourier series function, Vx and Vy are the velocity and 
Fourier coefficients of the metric plane origin limb displacement functions and F are  
the Fourier coefficients of the set of limb pose angle functions. As a final optimization 
step we perform a bundle adjustment procedure that minimizes reprojection error with 
respect to all parameters P of the gait projection function. 

3   Experimental Tests 

The method has been tested on 5 subjects walking freely along 6 different directions 
in a 7x7m2 area. The video sequences were acquired with a digital camera FLEA 
IEEE-1394 Digital Camera (Point Grey Research) with a spatial resolution of 
1024x768 pixels and 30 fps. Two 575 Watt lights illuminated the scene and 6 
reflective markers (Vicon® 14mm) have been applied on the lower limbs (3 on the 
shank and 3 on the thigh). Fig. 3 shows the experimental setup. 

3.1   Markers and Limb Pose Extraction 

The aim of this paper is to test the proposed view-point independent gait reconst- 
ruction method on reliable and known limb trajectories. For this reason a set of 
markers has been applied on the subjects’ legs and thus the first block of Fig. 1 has 
been replaced with the marker extraction (Fig. 2).  Moreover, this is only the first step 
of a wider project where the extraction of leg pose will be completely automatic by 
developing a specialized image processing technique. 

 

Fig. 2. Flow diagram for testing the proposed method 

For the extraction of limb poses frame by frame an algorithm based on color 
segmentation and blob analysis has been designed. 
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Because of the special reflective structure of the markers with respect to the 
background and to the subject clothes, the marker extraction can be easily and 
robustly achieved by applying an RGB threshold. Robustness to noise and lighting 
changes has been achieved by comparing the roundness of the objects obtained from 
the color segmentation. The centroid of the remaining objects is then estimated and a 
vertical separation of these points is used to classify them into two subsets 
representing the thigh and the shank (lower leg) points. The individual thigh and 
shank points are then matched between consecutive frames on the assumption that the 
same point in the next frame has not moved more than the still closest point, in 2D 
Euclidian norm, to the point in the present frame. This is of course dependent on the 
frame rate of the camera system. The frame rate of 30 fps that is used here is enough 
to make this classification stable for the type of movement captured.  

  

Fig. 3. Experimental setup 

Because of the special reflective structure of the markers with respect to the 
background and to the subject clothes, the marker extraction can be easily and 
robustly achieved by applying an RGB threshold. Robustness to noise and lighting 
changes has been achieved by comparing the roundness of the objects obtained from 
the color segmentation. The centroid of the remaining objects is then estimated and a 
vertical separation of these points is used to classify them into two subsets 
representing the thigh and the shank (lower leg) points. The individual thigh and 
shank points are then matched between consecutive frames on the assumption that the 
same point in the next frame has not moved more than the still closest point, in 2D 
Euclidian norm, to the point in the present frame. This is of course dependent on the 
frame rate of the camera system. The frame rate of 30 fps that is used here is enough 
to make this classification stable for the type of movement captured.  

After applying the method for extracting the markers trajectories to the video 
sequences, the limbs pose has been estimated frame by frame. Moreover, the hip and 
knee angles, θ  and φ  respectively, have been evaluated for each walking direction. 
Fig. 4 shows an example of markers extraction and the corresponding stick body 
model. 
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Fig. 4. Marker extraction and stick model 

3.2   Gait Reconstruction  

From the upper traces in Fig. 5 it is obvious that the mere extraction of limbs position 
from the 2D images produces angle trends that cannot be used directly for biometric 
identification. For this reason, the proposed method allows correction of these gait 
patterns so that they have trends similar to the one that can be achieved by extracting 
them on the anterior-posterior plane as showed in the lower part of Fig. 5. By 
inspection the correction achieved by our new approach has aligned the sequences 
such that they can now be used for identification purposes: the rectification process 
has led to series which are now closely aligned for the same subject. There is some 
slight variation between the resulting traces (in the lower part of Fig. 5) consistent 
with intra-subject variation between the recordings. 

Data obtained by analysing the 30 video sequences has been collected and in order 
to quantify the angle trends matching after the proposed correction, the Mean 
Correlation Coefficient (MCC) along the i (i=1,..N) different directions has been 
achieved. Let S be the number of subjects, the MCC for the angle θ  is defined in the 
following way: 
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where ( )kCC iθ  is the mean correlation coefficient of subject k along the walking 
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and ,i jRθ  is the off-diagonal elements of the correlation coefficients matrix between 

the directions i and j and similarly for φ.  
Fig. 6 shows how the MCCs vary with respect to the walking direction i (where 

i=0,…,360 as reported in Fig. 1). The results, with a mean value of 0.996, are 



 Human Perambulation as a Self Calibrating Biometric 149 

particularly encouraging and the peaks corresponding at the two fronto-parallel paths 
(at 90 and 270 degrees) confirm that the reconstructed angles along different 
directions are correlated with the canonical view. The front and rear views (at 0 and 
180 degrees) show the lowest performance, but this is only where the MCC is still 
very close to the mean anyway. The errors in the estimates for the shank (lower leg) 
inclination are slightly greater and the MCC is slightly lower, but still at minimum 
0.992. The larger error in the lower leg is due to the greater freedom in movement, 
and since the shank moves much faster than the thigh reducing effective resolution. 

Furthermore, the information regarding the limbs’ pose along different directions 
has allowed estimation of the root mean square (RMS) distance between the detected 
marker points and the projected ones. 

The mean RMS error for the 5 subjects is 0.2% of the image resolution. This result 
is particularly encouraging especially compared with the 0.1% RMS obtained using 
Zhang calibration algorithm [22].  

Moreover, the video sequences and the marker trajectories have been modified in 
order to test the method under different circumstances.  

Firstly, the sensitivity of the method with respect to the camera characteristics has 
been evaluated by changing the image resolution and the frame rate. 

Table 1 shows the mean MCC and RMS values obtained with the image spatial 
resolution varying from 320x240 to 640×480 to 1024×768 pixels. The frames have 
been resized using nearest-neighbor interpolation. 

 

 

Fig. 5. Hip and knee angles in different walking directions, unprocessed (above) and corrected 
(below) 

It is notable how the image resolution remarkably influences the RMS and how, on 
the other hand, the mean MCC remains higher than 0.9. The sensitivity of the 
proposed method to the camera frame rate is reported in Fig. 7, where the video 
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Fig. 6. Mean Correlation Coefficient (MCC) along the different walking directions 

sequences have been subsampled from 20 to 30 fps.  The mean MCC and RMS show 
that with a frame rate higher than 25 fps the performance has a linear trend. 

In addition, to simulate the limb tracking imprecision, zero-mean Gaussian noise 
has been added to the markers’ trajectories. The standard deviation of the added noise 
varies from 0 (original data) to 10 pixels. For each noise level, 6 different trials have 
been conducted and added to each marker trajectory. Obviously the error increases 
with the level of noise added to the trajectories but the decrease of MCC is 
particularly interesting because it is higher than 0.9 even at high noise levels. 

Table 1. Sensitivity of MCC and RMS with respect to image resolution  

 320x240 640x480 1024x768 

Mean MCC 0.989 0.992 0.996 

RMS (%) 0.990 0.549 0.278 

 

Fig. 7. Sensitivity of MCC and RMS with respect to camera frame rate 



 Human Perambulation as a Self Calibrating Biometric 151 

 

Fig. 8. Sensitivity of MCC and RMS with respect to Gaussian noise in the markers points 

Moreover, the noise study allows to understand how the proposed method depends 
on an accurate limb position extraction and thus to extend the approach in a 
markerless context. 

4   Conclusion 

It is widely recognized that gait identification has unique advantages, such as the 
unobtrusiveness, respect to other biometric techniques. Recently a lot of research has 
been conducted into the recognition of fronto-parallel gait or using more views after 
the calibration process. However, considering biometrics aims and the criminal 
investigation context these approaches appear limited, especially because usually 
there is no access to the cameras and the subjects do not walk along the canonical 
direction. For these reasons a system is required which does not rely on the subject’s 
pose or on the calibration of the camera. 

In this context this paper has introduced a novel method for a pose invariant gait 
analysis based on the assumptions that the nature of human gait is cyclic, the 
distances between the bone joints are invariant and the articulated leg motion is 
approximately planar. 

Experimental tests have been conducted on 5 subjects walking freely along 6 
different directions in a 7x7m2 area. Different conditions concerning image resolution, 
frame rate and noisy limb trajectories, have been compared. Moreover the influence 
of the walking direction on the angle’s estimation has been analysed. This quantity of 
data and the amount is sufficient to demonstrate that the proposed new approach can 
achieve view-point independent gait reconstruction as described.  

The obtained results are particularly encouraging for future system development 
concerning the markerless extraction of limbs’ pose, and for its appliance in real 
surveillance scenarios. 
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Abstract. We present the first framework for detecting, localizing and classify-
ing visual traits of object classes, e.g.gender or age of human faces, from arbi-
trary viewpoints. We embed all three tasks in a viewpoint-invariant model derived
from local scale-invariant features (e.g. SIFT), where features are probabilisti-
cally quantified in terms of their occurrence, appearance, geometry and relation-
ship to visual traits of interest. An appearance model is first learned for the object
class, after which a Bayesian classifier is trained to identify the model features in-
dicative of visual traits. The advantage of our framework is that it can be applied
and evaluated in realistic scenarios, unlike other trait classification techniques that
assume data that is single-viewpoint, pre-aligned and cropped from background
distraction. Experimentation on the standard color FERET database shows our
approach can automatically identify the visual cues in face images linked to the
trait of gender. Combined detection, localization and gender classification error
rates are a) 15% over a 180-degree range of face viewpoint and b) 13% in frontal
faces, lower than other reported results.

1 Introduction

Practical visual processing applications must be able to robustly detect instances of
object classes of interest in arbitrary, cluttered images, and make inferences regarding
their visual traits. For example, consider an intelligent vision system that must identify
all males in a crowded scene, as illustrated in Figure 1. Image features arising from hu-
man face instances must first be detected and localized in the midst of unrelated clutter
and viewpoint change, after which they can be used to determine traits such as gender
for each person detected. Although the tasks of detection, localization and classifica-
tion are all inextricably linked in such realistic visual processing scenarios, they are
typically treated in isolation in the current vision literature. For example, approaches to
classifying facial traits such as gender typically assume frontal face data which has been
precisely pre-aligned and cropped from distracting background clutter prior to classi-
fication [2,25,14,17,9]. As a result, it remains questionable whether such approaches
can be applied in conjunction with automatic detection strategies in arbitrary, cluttered
scenes where automatic face localization is non-trivial. Likewise, it is unclear whether
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Fig. 1. Illustrating the output of our general framework for detection, localization and trait classi-
fication from arbitrary viewpoints. All three tasks are embedded in a viewpoint-invariant model
derived from scale-invariant image features. Here, face instances (white arrows above) are first
detected and localized from scale-invariant features (white circles) extracted in a cluttered scene.
Features associated with each face instance are then used in a Bayesian classifier to determine
face gender (lower insets). The image shown is from the CMU face database [5], and the proba-
bilistic framework used is learned from 500 FERET [1] face images taken at arbitrary viewpoints.

recent general object class detection strategies [8,7,19,6,4,21] can be extended in order
to learn and classify abstract visual traits such as gender from arbitrary viewpoints.

Our contribution in this paper is a general, integrated framework for detecting, lo-
calizing and classifying visual traits of object classes from arbitrary viewpoints. Our
approach is the first to propose learning visual traits from arbitrary viewpoints, and
the first to embed all three tasks in a general appearance model based on local scale-
invariant features (e.g. SIFT), where features are probabilistically quantified in terms
of their occurrence, appearance and geometry within a common reference frame. Our
approach involves first learning a set of model features related to the object class of
interest, after which the same features are used to train a Bayesian classifier for visual
traits. Classifier training involves estimating the likelihood ratio of feature occurrence
given trait presence vs. absence, the underlying premise being that informative features
are more likely than not to co-occur with the trait of interest. The resulting framework
can be used to detect and localize and classify the traits of object class instances in the
presence of viewpoint change, geometrical deformations such as translation, orientation
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and scale changes, linear illumination changes, partial occlusion and multi-model intra-
class variation (e.g. faces with/without sunglasses).

The remainder of this paper is organized as follows: in Section 2 we review related
work in general object class detection and visual trait classification. In Section 3 we
describe our approach to trait learning and classification based on probabilistic model-
ing of scale-invariant image features. Although our approach generalizes to a variety of
object classes and visual traits, we experiment on the class of faces and the trait of gen-
der in Section 4 using the standard color FERET database. We provide a quantitative
performance evaluation for combined detection, localization and gender classification
of faces images in both arbitrary and frontal viewpoint contexts, and show how our ap-
proach can identify visual cues of gender in face images over a range of viewpoint. A
discussion follows in Section 5.

2 Related Work

2.1 Object Class Detection

The general detection task requires identifying and localizing instances of an object
class, e.g. cars or faces, in images. General object class detection requires effectively
dealing with a wide range of appearance variation due to viewpoint change, geometrical
deformations such as translation, orientation and scale changes, illumination changes,
partial pattern occlusion and multi-modal intra-class variation (i.e. faces with/without
sunglasses). Such variation can only be realistically overcome by learning a model from
a set of natural training images. Early approaches advocated learning models of global
features, i.e. eigenfaces [22], but proved to be inefficient for detection over geomet-
rical deformations and poorly suited for coping with local appearance variation and
occlusion. To overcome these difficulties, researchers have increasingly turned to local
image feature representations. Scale-invariant features [15,3,16,13] for instance can be
robustly and efficiently extracted from scale-space pyramids in the presence of trans-
lation, orientation and scale geometrical deformations and illumination changes. As
features are local, they can be used to determine correspondence between different im-
ages in the presence of partial occlusion. Geometrical information from the extraction
process including feature location, orientation and scale can be used to generate inde-
pendent hypotheses as to the geometrical transform relating different images, without
requiring an expensive explicit search over transform parameters.

While scale-invariant feature correspondences cannot generally be established di-
rectly between different instances of the same object class due to intra-class variability,
research has shown that learned probabilistic models of features can be used to reli-
ably detect object class instances in arbitrary, cluttered images [8,7,19,6,4,21]. Such
models describe the appearance of an object class in terms of a set of local features,
including their appearances, occurrences and their geometries (i.e. image location, ori-
entation and scale). Models generally vary in terms of the assumptions made regard-
ing inter-feature geometrical dependencies, e.g. geometry independent models [7,19],
naive Bayes dependencies [21,8], Markov dependencies [4], fully-dependent [24], and
intermediate approaches [6]. Although geometrical dependence assumptions vary, most
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models make the assumption of conditional independence of individual feature appear-
ances/occurrences given feature geometry and object class.

Most approaches to invariant feature modeling are based on stable 2D feature config-
urations in the image plane, and are thus single-viewpoint in nature [8]. Multi-view [20]
and viewpoint-invariant [21] representations have emerged to address object class
detection and localization from arbitrary viewpoints. Modeling 3D object class appear-
ance over viewpoint change is considerably more challenging than from single view-
points, as correspondences must be established between different views in addition to
different object class instances, and learning techniques typically employ a degree of
external supervision. The multi-view modeling approach [20] requires a viewsphere
sampled at regular angular intervals, for each of set of different object class instances.
Such an approach is not well suited to learning from natural images taken from arbi-
trary viewpoints around arbitrary 3D object class instances, however. The viewpoint-
invariant approach [21] relates features in different images via an object class invariant
(OCI), a geometrical reference frame that is uniquely defined for each object class in-
stance and invariant to projective image transform arising from viewpoint change. As
the variable of viewpoint is effectively marginalized from the formulation, a viewpoint-
invariant model can be learned from natural imagery taken from arbitrary viewpoints
from labeled images.

2.2 Visual Trait Classification: Gender from Faces

Visual traits are abstract qualities of an object class identifiable from images, such as
the make or model of cars, the age or gender of faces, etc. They represent a mech-
anism by which members of the same object class can be described or subdivided.
Due to the ubiquitous nature of face image analysis, one of the most common visual
trait classification tasks is that of determining gender from face images, and the wide
range of published approaches highlights the state-of-the-art in general trait classifica-
tion. Trait learning has been tackled from spatially global feature representations such
as templates[14,9], principle components [17] or independent components [10]. Other
more recent approaches used pixels as features [2] or Haar wavelets [25,18]. Machine
learning techniques such as neural networks [9], support vector machines (SVMs) [17]
and boosted classifiers [2] have been brought to bear. In the interest of comparison, most
approaches train and test on the standard FERET face database [1] containing accurate
labels for visual traits such as gender, age and ethnicity.

To date, all published approaches to trait classification are based exclusively on sin-
gle viewpoints, i.e. frontal faces [2,25,10,17,9]. With the exception of [18], most ap-
proaches assume that, prior to classification, faces are precisely localized and back-
ground distraction such as hair and clothing is cropped away. For example, localization
is performed by manually specifying eye locations [2] or using special-purpose frontal
face alignment software [25,17], and pre-defined facial masks are subsequently applied
to remove background clutter. As a result, classification error rates of 4% to 10% repre-
sent artificially low, ideal-case results, and offer little insight as to classification perfor-
mance in a general vision system where object class localization is non-trivial. Indeed,
a recent work evaluating the effect of artificial localization perturbations on classifi-
cation accuracy showed that accuracy drops off rapidly with even small independent
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perturbations in scale and orientation (i.e. 5 degrees) [2]. An additional fact worth not-
ing is that several published works reporting low error rates use different images of
the same person in both classifier training and testing [25,17]. As facial features aris-
ing from different frontal images of the same person are highly correlated, one cannot
know whether the low classification error reported reflects the ability of the classifier to
generalize to new, unseen faces or simply classification-by-recognition.

2.3 Combined Detection, Localization and Trait Classification

To date only a single approach has proposed combined detection, localization and clas-
sification within an integrated framework suitable for general object classes [18], using
boosted classifiers of Haar wavelet features [23] for all tasks. The approach is single-
viewpoint (frontal faces) and not invariant to orientation, and the reported error rate of
21% reflects the increased difficulty of the combined task. This result is based a pro-
prietary database, however, where faces with ambiguous gender are manually removed,
as are faces whose in-plane orientation is greater than 30 degrees, and as such a di-
rect comparison cannot be made. The general scale-invariant feature-based approach
to modeling object classes offers an attractive alternative for combined detection, lo-
calization and classification, as it can provide invariance to viewpoint change, in ad-
dition to in addition to translation, orientation and scale changes. To date, the general
scale-invariant feature-based modeling approach has not been investigated for visual
trait classification, and classifying visual traits such as gender from faces from arbitrary
viewpoints has not been addressed.

3 Classifying Visual Traits from Local Features

In realistic scenarios, visual trait classification is inseparable from detection and local-
ization: features must first be detected and localized before they can be classified. We
propose embedding all three tasks within a general appearance model derived from lo-
cal scale-invariant features, which can be used to detect, localize and classify traits of
object classes in natural imagery captured from arbitrary viewpoints. A model describ-
ing object class appearance is first learned, after which a Bayesian trait classifier is then
trained from features in the model.

3.1 Viewpoint-Invariant Appearance Modeling

To effectively capture the subtleties of visual traits, we require a model that can be 1)
effectively learned from arbitrary viewpoints 2) used to detect and localize individual
object class instances in arbitrary viewpoints and 3) provide a rich, multi-modal de-
scription of object class appearance on which trait classification can be based. We thus
avoid geometry-free models which are generally less suitable for localizing object class
instances [7,19] and models consisting of relatively few features (e.g.10) [8] which
may not provide a sufficiently rich image description for visual traits. While our trait
classification approach is generally applicable to single-viewpoint models consisting of
many features (e.g.100+) [4], effectively learning and classifying visual traits requires
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Fig. 2. Illustrating the viewpoint-invariant OCI model relating scale-invariant features (white cir-
cles) to an OCI (solid white arrows). The OCI, defined here a line segment from the base of the
nose to the forehead, represents a viewpoint-invariant mechanism for grouping scale-invariant
image features in images taken from arbitrary viewpoints. A probabilistic model (left) is learned
from manually labeled OCIs in training images taken at arbitrary viewpoints. Model instances
can then be robustly detected and localized in a new image (right) taken at an arbitrary viewpoint,
based on detected model features (dashed black lines) that agree on an OCI (dashed white arrow).
Note that OCI shown here 1) exploits the symmetry of faces allowing mirror feature correspon-
dence and 2) is not designed for overhead/underhead views.

addressing the issue of viewpoint change. To do this, we adopt the viewpoint-invariant
OCI model [21]. The model relates scale-invariant features to an OCI, an abstract 3D
geometrical structure that is uniquely defined with respect to each 3D object class in-
stance and invariant to projective transform arising from viewpoint change, as illustrated
in Figure 2. The probabilistic model formulation adopts the assumption of conditional
independence of feature geometries and appearances/occurrences, and the naive Bayes
assumption of conditional independence of individual features i, given the OCI o. Un-
der these assumptions, the posterior probability of o given feature geometry G : {gi},
appearance A : {ai} and occurrence F : {fi} data can be expressed as:

p(o|G, A, F ) ∝ p(o)p(G|o)p(A, F |o),

∝ p(o)
∏

i

p(gi|o)p(ai|fi)p(fi|o), (1)

where distributions p(gi|o), p(ai|fi) and p(fi|o) over individual feature geometries,
appearances and occurrences are learned from a set of training data containing features
and labeled OCIs. Novel object class instances can be detected and localized in new
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images by maximizing the posterior probability in equation (1) with respect to o based
on detected model features.

3.2 Visual Trait Classification

Once a viewpoint invariant model has been learned for a given object class, we seek to
identify model features indicative of visual traits using the co-occurrence statistics of
individual features with the trait of interest. To do this, we consider the random event
fi = 1 signifying the occurrence of model feature i, and we expand the random event
of object class occurrence o = 1 into a discrete random variable c : {c1, . . . , cK} over
K trait values of interest, e.g.gender : {female, male}. A Bayesian classifier γ(c)
can then be used to express the most probable trait classification given a set of model
feature occurrences {fi}:

γ(cj) =
p(cj |{fi})
p(c̄j |{fi})

=
p(cj)
p(c̄j)

∏

i

p(fi|cj)
p(fi|c̄j)

. (2)

where p(cj)
p(c̄j)

is the prior ratio of trait value presence cj vs. absence c̄j (e.g. male vs.

not male or female), and p(fi|cj)
p(fi|c̄j)

expresses the likelihood ratio of trait value presence
cj vs. absence c̄j coinciding with feature observation fi. Features that are important to
classification or highly informative with regard to trait value cj will have high likeli-
hood ratios. The focus of our approach is to use these likelihood ratios to quantify the
association of model features with visual traits, as illustrated in Figure 3.

In order to estimate the likelihood parameters, we use a supervised learning process,
based on observed model feature occurrences fi and trait labels cj for each training
image. Discrete class-conditional likelihoods p(fi|cj) can be represented as binomial
distributions, parameterized by event counts [12]. During training, p(fi|cj) is estimated
from p(cj) and p(fi, cj), the probability of observed joint events (fi, cj), using the
definition of conditional probability:

p(fi|cj) =
p(fi, cj)
p(cj)

. (3)

The most straightforward manner of estimating p(fi, cj) is via ML (maximum likeli-
hood) estimation, by counting the joint events (fi, cj) and normalizing with respect to
their sum. ML estimation is known to be unstable in the presence of sparse data, leading
to noisy or undefined parameter estimates. This is particularly true in models consisting
of many local features, where feature occurrences are typically rare events. Bayesian
MAP (maximum a posteriori) estimation can be used to cope with data sparsity, and
involves regularizing estimates using a Dirichlet hyperparameter distribution [12]. In
practice, Dirichlet regularization involves pre-populating event count parameters with
samples following a prior distribution embodying assumptions regarding the expected
sample distribution. Where no relevant prior knowledge exists, a uniform or maximum
entropy prior can be used [11]. Although both ML and MAP estimates converge as the
number of data samples increases, MAP estimation using a uniform prior will tend to-
wards conservative parameter estimates while the number of data samples is low. The
final estimator we use becomes:
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p(fi|cj) ∝ ki,j

p(cj)
+ di,j , (4)

where ki,j is the frequency of the joint occurrence event (fi, cj), p(cj) is the frequency
of trait value cj in the training data and di,j is the Dirichlet regularization parameter
used to populate event counts. In the case of a uniform prior, di,j is constant for all
i, j. The proportionality constant for the likelihood in equation (4) can be obtained by
normalizing over values of fi, but is not required for likelihood ratios.

(a) (b)

Fig. 3. Illustrating classification of the visual trait of gender from local features (white circles).
A given face instance consists of a set of local features, a subset of which are reflective of either
gender, and it is their ensemble which determines the final decision. To illustrate, we describe a
feature as strongly male or female if its likelihood ratio of co-occurring with the indicated gender
in training images is greater than 2:1. Of the 63 model features detected in image (a), 15 are
strongly male and 1 is strongly female, suggesting a male face. Of the 31 features detected in
image (b), 7 are strongly female and 1 is strongly male, suggesting a female face. Many features,
although very common in the class of face images, are uninformative regarding gender.

4 Experimentation

For the purpose of experimentation, we consider the combined task of detection, local-
ization and gender classification of faces from arbitrary viewpoints. To compare with
the results in the literature, we also provide results for a model trained from frontal
faces only. Experimentation is based on the standard, publicly available color FERET
face image database [1] for both training and testing. The FERET database consists
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of images of 994 unique subjects of various ethnicity, age, gender, taken from various
viewpoints, illumination conditions, with/without glasses, etc. We process images at a
resolution of 256x384 pixels and no subjects are duplicated in either testing or training
data, in order to evaluate the generality of our approach.

Learning proceeds as follows: an initial local feature-based model is trained on
randomly-selected subsets of face images using the supervised OCI technique, and the
remaining images are used for testing. Model learning requires approximate labeling of
an OCI in the form of a line segment from the base of the nose to the forehead as in
Section 3.1, and automatically extracting scale-invariant features in each training im-
ages. Although a variety of different scale-invariant features can be used, we use the
SIFT (scale-invariant feature transform) technique [15] for feature detection and ap-
pearance description based on robust implementation made public by the author. Once
the model has been learned, model feature occurrences identified in the training set
along with FERET gender labels are used to estimate likelihood ratios of the Bayesian
trait classifier as described in Section 3. In estimating likelihood ratios via equation (4),
we used a Dirichlet regularization parameter of di,j = 2 which maximizes training set
classification performance.

Once the framework has been learned, combined detection, localization and classi-
fication proceed on the remainder of FERET faces not used in training. Scale-invariant
features are first extracted in all testing images, after which detection and localization
are performed by determining the most probable OCI instance in each of the testing im-
ages based on extracted image features. Model features contributing the OCI instance
are then used to determine gender using the Bayesian classifier in equation (2), using a
prior trait ratio of p(cj)

p(c̄j)
= 1. Note that the FERET database does not necessarily repre-

sent the most challenging test for model detection, as most faces are clearly visible, but
it does allow evaluating whether or not facial features can be automatically localized
with sufficient accuracy for subsequent trait classification. Qualitative experimentation
was performed on cluttered imagery from the CMU profile database [5], as illustrated
in Figure 1), demonstrating the viability of the system in difficult detection/localization
contexts. Performance is generally better for higher resolution faces, where the number
of SIFT features extracted is sufficient for reliable detection and classification. Classifi-
cation appears correct in most cases, although ground truth gender labels are unavailable
and difficult to determine in many cases.

4.1 Locating, Detecting and Classifying from Arbitrary Viewpoints

In order to investigate the trait of gender from arbitrary viewpoints, a database of all 994
unique FERET subjects was selected, where each subject image is chosen at random
from a 180 degree viewpoint range (i.e. from left to right profile images). Figure 4
illustrates the viewpoint distribution in the dataset. We trained on two randomly selected
subsets of 331 and 497 images (1/3 and 1/2 of the data), and performed combined
detection, localization and gender classification on the remaining images.

Table 1 summarizes the results obtained, where our approach achieves an error rate
of 15% based on 497 training images. Misclassification rates were 12% and 17% for
males and females, respectively, examples can be seen in Figure 5. The detection and
localization error rate prior to classification was 3.6%, where the discrepancy between
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Fig. 4. A histogram illustrating the viewpoint distribution for the 994 unique FERET subject
images used in experimentation

Table 1. Error rates for localization, and combined detection, localization and classification over
viewpoint. Our Bayesian classifier obtains an error rate of 15% when trained on 497 of 994
images. Localization error rates are based on discrepancy threshold between localized and manual
labeled OCIs in testing images.

Database Loc. Error Combined Error

FERET (497 training) 3.6% 15%
FERET (331 training) 4.5% 19%

the localized and labeled OCIs was greater than a threshold in scale, orientation and
location of log(1.5), 20 degrees and OCI scale/2 pixels, respectively. It is possible that
increasing the training data size by several hundred more images would further reduce
the error rate by several percentage points.

4.2 Identifying Visual Cues of Gender

As humans, we are all capable of determining visual traits such as face gender of a face
image with reasonable certainty. What is more difficult is to identify the visual cues
that are operative in making the determination - most faces contain a variety of cues
that could be construed as either male or female, and it is their ensemble which deter-
mines the final decision. The local feature-based approach provides insight in terms of
what local image cues are most important in determining visual traits, insight which
is not possible from other representations, e.g. global features or templates. By sorting
features according to their likelihood ratios, the image regions most telling regarding
the trait of gender can be visualized as in Figure 6. In a viewpoint invariant model, ear
features are more indicative of males, as they are less visible due to generally longer
female hair. Several features around the mouth are indicative of males, indicative of
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Illustrating several misclassification examples. Images (a)-(c) are misclassified as male,
while (d)-(f) are misclassified as female. Misclassification can occur due to faces containing a
disproportionately high number of features indicative of the opposite sex, e.g. (a)-(e), or a lack of
gender-informative features e.g. (f).

beards or facial stubble. Females are distinguished by features arising from hairlines,
eyes (possible from makeup) and lips. In contrast, certain model features arising from
nostrils or cheeks, although very common in the class of face images, were generally
less informative regarding gender. Note that although the male:female ratio in training
data was close to 1:1, approximately twice as many gender-related features were identi-
fied for males as for females, suggesting a greater number of visual cues characteristic
of the male gender.

4.3 Locating, Detecting and Classifying from Frontal Views

In order to compare our general approach results in the literature, we also trained and
tested on a restricted set of frontal faces. We used the 925 standard FERET frontal im-
ages labeled ”* fa.*”, models were trained from randomly selected subsets of 100 and
200 images. Table 2 for the combined task of detection, localization and classification,
error rates for classification only (i.e. faces pre-aligned and cropped prior to classifica-
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Table 2. Published error rates for combined detection, localization and classification for frontal
faces. Our Bayesian classifier trained on 200 FERET faces in (a) achieves the lowest error rate of
13%, in comparison with (b) the boosted Haar wavelet classifier [18] of 21%. Results for (b) are
based on a proprietary database, however, so a precise comparison cannot be made. Results for
classification only (c), i.e. with faces pre-aligned and cropped, represent an ideal-case baseline
and are included for completeness.

Task Method Features Database Error Rate

Combined detection, (a) Bayesian classifier Scale-invariants FERET (200 training) 13%
localization FERET (100 training) 16%

and classification (b) Adaboost [18] Haar wavelets Proprietary (≈3000 training) 21%

Classification only (c) Various [2,25,10,17,9] Various FERET 4%-10%

Fig. 6. Illustrating visual cues indicative of face gender, in the form of scale-invariant fea-
tures. Features are sorted in increasing order of their log likelihood ratio log( p(fi=1|male)

p(fi=1|female) ).
Of approx. 15,000 features in a viewpoint invariant face model learned from 497 ran-
domly selected FERET images, approx. 3000 features bear information regarding gender (i.e.
|log( p(fi=1|male)

p(fi=1|female) )| > 0.5). Features lying to the left of the graph occur more frequently in
female subjects and those to the right more frequently in male subjects. Face images shown illus-
trate instances of gender-informative features (white circles) with absolute log likelihood ratios
ranging from 1.3 to 2.0. Although the male:female ratio in the training data was 28:22, approxi-
mately twice as many gender-reflective features are associated with males.
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tion) represent an ideal-case baseline and are included for completeness. For the more
difficult combined task, our Bayesian gender classifier achieves an error rate of 13% for
training based on 200 randomly selected FERET subjects. The misclassification rates
are 9.7% and 15% for males and females, respectively. Note that training on only 100
subjects results a marginally higher error rate of 16%, suggesting that the majority of
the information regarding face gender is captured from on the order of several hundred
subjects. Note that significantly fewer training images are required to obtain similar
error rates to modeling viewpoint.

5 Discussion

In this paper, we present the first approach addressing learning and classification of vi-
sual traits of object classes from arbitrary viewpoints. As a realistic scenario requires
first detecting and localizing object class instances prior to trait classification, we em-
bed all three tasks within a single viewpoint-invariant model of general object class ap-
pearance that can be used for combined detection, localization and classification from
arbitrary viewpoints. Our approach involves first learning a model of object class ap-
pearance, then training a Bayesian classifier for visual traits from model features. Clas-
sifier training involves estimating the likelihood ratio of positive feature occurrence
given trait presence vs. absence, where features associated with significantly non-zero
likelihood ratios indicate visual cues reflective of the trait of interest. We provide the
first experimental results on a standard, publicly available database (FERET) for the
combined tasks of detection, localization and gender classification of faces. We obtain
an error rate of 15% for the combined task over a 180 degree range of face viewpoint,
and an error rate of 13% for frontal faces.

Various future avenues exist for learning visual traits from general appearance mod-
els based on local scale-invariant features. Computational complexity of detection, lo-
calization and classification is low and the combined system should be implementable in
real or near-real time. Visual traits of faces can be used as a soft biometric in interactive
image-based applications, surveillance or recognition, and the framework could possi-
bly extend to classifying traits such as age or emotion. We experimented with learning
the trait of age, by dividing faces into less than/greater than 25 years of age, splitting
the data set approximately evenly. A somewhat high classification error rate of 23% was
obtained framework trained from the framework trained on 200 frontal faces, indicating
that age classification is a more difficult problem than gender, particularly when faces
are split at the 25-year old mark. Useful traits can potentially be learned from of dif-
ferent object classes, for example the make or model of cars and motorbikes. Whether
different traits such as age and gender are best modeled independently or jointly is
an open research question, the Bayesian classifier we present could be used for either
although joint modeling becomes computationally complex for large numbers of dif-
ferent traits. Continuous-valued traits such as age could potentially be modeled using
continuous-valued likelihoods. A variety of different scale-invariant feature types other
than SIFT could be incorporated to potentially improve classification performance by
highlighting different image characteristics.
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Abstract. Recognition in uncontrolled situations is one of the most important
bottlenecks for practical face recognition systems. We address this by combining
the strengths of robust illumination normalization, local texture based face repre-
sentations and distance transform based matching metrics. Specifically, we make
three main contributions: (i) we present a simple and efficient preprocessing chain
that eliminates most of the effects of changing illumination while still preserving
the essential appearance details that are needed for recognition; (ii) we introduce
Local Ternary Patterns (LTP), a generalization of the Local Binary Pattern (LBP)
local texture descriptor that is more discriminant and less sensitive to noise in
uniform regions; and (iii) we show that replacing local histogramming with a lo-
cal distance transform based similarity metric further improves the performance
of LBP/LTP based face recognition. The resulting method gives state-of-the-art
performance on three popular datasets chosen to test recognition under difficult
illumination conditions: Face Recognition Grand Challenge version 1 experiment
4, Extended Yale-B, and CMU PIE.

1 Introduction

One of the key challenges of face recognition is finding efficient and discriminative fa-
cial appearance descriptors that can counteract large variations in illumination, pose,
facial expression, ageing, partial occlusions and other changes [27]. There are two
main approaches: geometric feature-based descriptors and appearance-based descrip-
tors. Geometric descriptors can be hard to extract reliably under variations in facial
appearance, while appearance-based ones such as eigenfaces tend to blur out small de-
tails owing to residual spatial registration errors. Recently, representations based on
local pooling of local appearance descriptors have drawn increasing attention because
they can capture small appearance details in the descriptors while remaining resistant
to registration errors owing to local pooling. Another motivation is the observation that
human visual perception is well-adapted to extracting and pooling local structural in-
formation (‘micro-patterns’) from images [2]. Methods in this category include Gabor
wavelets [16], local autocorrelation filters [11], and Local Binary Patterns [1].

In this paper we focus on Local Binary Patterns (LBP) and their generalizations.
LBP’s are a computationally efficient nonparametric local image texture descriptor.
They have been used with considerable success in a number of visual recognition tasks
including face recognition [1,2,20]. LBP features are invariant to monotonic gray-level

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 168–182, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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changes by design and thus are usually considered to require no image preprocessing
before use1. In fact, LBP itself is sometimes used as a lighting normalization stage for
other methods [12]. However, in practice the reliability of LBP decreases significantly
under large illumination variations (c.f . table 3). Lighting effects involve complex local
interactions and the resulting images often violate LBP’s basic assumption that gray-
level changes monotonically. We have addressed this problem by developing a simple
and efficient image preprocessing chain that greatly reduces the influence of illumina-
tion variations, local shadowing and highlights while preserving the elements of visual
appearance that are needed for recognition.

Another limitation of LBP is its sensitivity to random and quantization noise in uni-
form and near-uniform image regions such as the forehead and cheeks. To counter this
we extend LBP to Local Ternary Patterns (LTP), a 3-valued coding that includes a
threshold around zero for improved resistance to noise. LTP inherits most of the other
key advantages of LBP such as computational efficiency.

Current LBP based face recognition methods partition the face image into a grid
of fixed-size cells for the local pooling of texture descriptors (LBP histograms). This
coarse (and typically abrupt) spatial quantization is somewhat arbitrary and not neces-
sarily well adapted to local facial morphology. It inevitably causes some loss of dis-
criminative power. To counter this we use distance transform techniques to create local
texture comparison metrics that have more controlled spatial gradings.

To illustrate the effectiveness of our approach we present experimental results on
three state-of-the-art face recognition datasets containing large lighting variations sim-
ilar to those encountered in natural images taken under uncontrolled conditions: Face
Recognition Grand Challenge version 1 experiment 1.0.4 (‘FRGC-104’) [19]; Extended
Yale illumination face database B (‘Extended Yale-B’) [9,15]; and CMU PIE [22].

2 Related Work

As emphasized by the recent FRVT and FRGC trials [19], illumination variations are
one of the most important bottlenecks for practical face recognition systems. Gener-
ally, one can cope with this in two ways. The first uses training examples to learn a
global model of the possible illumination variations, for example a linear subspace or
manifold model, which then generalizes to the variations seen in new images [5,3]. The
disadvantage is that many training images are required.

The second approach seeks conventional image processing transformations that re-
duce the image to a more “canonical” form in which the variations are suppressed. This
has the merit of easy application to real images and the lack of a need for comprehensive
training data. Given that complete illumination invariants do not exist [7], one must con-
tent oneself with finding representations that are resistant to the most common classes
of natural illumination variations. Most methods exploit the fact that these are typically
characterized by relatively low spatial frequencies. For example, the Multiscale Retinex
(MSR) method of Jobson et al. [13] normalizes the illumination by dividing the image
by a smoothed version of itself. A similar idea (with a different local filter) is used by

1 One exception is Local Gabor Binary Pattern Histogram Sequences [26] whose Gabor magni-
tude mapping can be regarded as a special kind of preprocessing for LBP.
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Wang et al. [23] in the Self Quotient Image model (SQI). More recently, Chen et al.
[8] improved SQI by using Logarithmic Total Variation (LTV) smoothing, and Gross &
Brajovic (GB) [10] developed an anisotropic smoothing method that relies on the itera-
tive estimation of a blurred version of the original image. Some comparative results for
these and related works can be found in [21].

In this paper we adopt the “canonical form” philosophy, basing our method on a
chain of efficient processing steps that normalize for various effects of the changing
illumination environment. The main advantages of our method are simplicity, compu-
tational efficiency and robustness to lighting changes and other image quality degrada-
tions such as blurring.

We describe our LBP/LTP face descriptors and their distance transform based sim-
ilarity metric in the next two sections, detailing our preprocessing method in §5 and
concluding with experiments and discussion.

3 Local Ternary Patterns

3.1 Local Binary Patterns (LBP)

Ojala et al. [17] introduced the Local Binary Pattern operator in 1996 as a means of
summarizing local gray-level structure. The operator takes a local neighborhood around
each pixel, thresholds the pixels of the neighborhood at the value of the central pixel
and uses the resulting binary-valued image patch as a local image descriptor. It was
originally defined for 3×3 neighborhoods, giving 8 bit codes based on the 8 pixels
around the central one. Formally, the LBP operator takes the form

LBP (xc, yc) =
∑7

n=0 2n s(in − ic) (1)

where in this case n runs over the 8 neighbors of the central pixel c, ic and in are the
gray-level values at c and n, and s(u) is 1 if u ≥ 0 and 0 otherwise. The LBP encoding
process is illustrated in fig. 1.

Two extensions of the original operator were made in [18]. The first defined LBP’s
for neighborhoods of different sizes, thus making it feasible to deal with textures at
different scales. The second defined the so-called uniform patterns: an LBP is ‘uniform’
if it contains at most one 0-1 and one 1-0 transition when viewed as a circular bit string.
For example, the LBP code in fig. 1 is uniform. Uniformity is an important concept in
the LBP methodology, representing primitive structural information such as edges and
corners. Ojala et al. observed that although only 58 of the 256 8-bit patterns are uniform,

Fig. 1. Illustration of the basic LBP operator
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nearly 90 percent of all observed image neighbourhoods are uniform. In methods that
histogram LBP’s, the number of bins can be thus significantly reduced by assigning all
non-uniform patterns to a single bin, often without losing too much information.

3.2 Local Ternary Patterns (LTP)

LBP’s are resistant to lighting effects in the sense that they are invariant to monotonic
gray-level transformations, and they have been shown to have high discriminative power
for texture classification [17]. However because they threshold at exactly the value of
the central pixel ic they tend to be sensitive to noise, especially in near-uniform image
regions. Given that many facial regions are relatively uniform, it is potentially useful to
improve the robustness of the underlying descriptors in these areas.

This section extends LBP to 3-valued codes, Local Ternary Patterns, in which gray-
levels in a zone of width ±t around ic are quantized to zero, ones above this are quan-
tized to +1 and ones below it to −1, i.e. the indicator s(u) is replaced by a 3-valued
function:

s′(u, ic, t) =

⎧
⎨

⎩

1, u ≥ ic + t
0, |u − ic| < t
−1, u ≤ ic − t

(2)

and the binary LBP code is replaced by a ternary LTP code. Here t is a user-specified
threshold (so LTP codes more resistant to noise, but no longer strictly invariant to gray-
level transformations). The LTP encoding procedure is illustrated in fig. 2. Here the
threshold t was set to 5, so the tolerance interval is [49, 59].

Fig. 2. Illustration of the basic LTP operator

When using LTP for visual matching we could use 3n valued codes, but the uniform
pattern argument also applies in the ternary case. For simplicity the experiments below
use a coding scheme that splits each ternary pattern into its positive and negative parts
as illustrated in fig. 3, subsequently treating these as two separate channels of LBP de-
scriptors for which separate histograms and similarity metrics are computed, combining
these only at the end of the computation.

LTP’s bear some similarity to the texture spectrum (TS) technique from the early
1990’s [24]. However TS did not include preprocessing, thresholding, local histograms
or uniform pattern based dimensionality reduction and it was not tested on faces.
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Fig. 3. An example of the splitting of an LTP code into positive and negative LBP codes

4 Distance Transform Based Similarity Metric

T. Ahonen et al. introduced an LBP based method for face recognition [1] that divides
the face into a regular grid of cells and histograms the uniform LBP’s within each cell,
finally using nearest neighbor classification in the χ2 histogram distance for recogni-
tion:

χ2(p, q) =
∑

i

(pi − qi)2

pi + qi
(3)

Here p, q are two image descriptors (histogram vectors). Excellent results were obtained
on the FERET dataset.

Possible criticisms of this method are that subdividing the face into a regular grid is
somewhat arbitrary (cells are not necessarily well aligned with facial features), and that
partitioning appearance descriptors into grid cells is likely to cause both aliasing (due to
abrupt spatial quantization) and loss of spatial resolution (as position within a grid cell
is not coded). Given that the aim of coding is to provide illumination- and outlier-robust
appearance-based correspondence with some leeway for small spatial deviations due to
misalignment, it seems more appropriate to use a Hausdorff distance like similarity
metric that takes each LBP or LTP pixel code in image X and tests whether a similar
code appears at a nearby position in image Y , with a weighting that decreases smoothly
with image distance. Such a scheme should be able to achieve discriminant appearance-
based image matching with a well-controllable degree of spatial looseness.

We can achieve this using Distance Transforms [6]. Given a 2-D reference image X ,
we find its image of LBP or LTP codes and transform this into a set of sparse binary
images bk, one for each possible LBP or LTP code value k (i.e. 59 images for uniform
codes). Each bk specifies the pixel positions at which its particular LBP or LTP code
value appears. We then calculate the distance transform image dk of each bk. Each pixel
of dk gives the distance to the nearest image X pixel with code k (2D Euclidean distance
is used in the experiments below). The distance or similarity metric from image X to
image Y is then:

D(X, Y ) =
∑

pixels (i, j) of Y w(dkY (i,j)
X (i, j)) (4)
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Fig. 4. From left to right: a binary layer, its distance transform, and the truncated linear version
of this

Here, kY (i, j) is the code value of pixel (i, j) of image Y and w() is a user-defined
function2 giving the penalty to include for a pixel at the given spatial distance from the
nearest matching code in X. In our experiments we tested both Gaussian similarity met-
rics w(d) = exp{−(d/σ)2/2} and truncated linear distances w(d) = min(d, τ). Their
performance is similar, with truncated distances giving slightly better results overall.
The default parameter values (for 120×120 face images in which an iris or nostril has
a radius of about 6 pixels) are σ = 3 pixels and τ = 6 pixels.

Fig. 4 shows an example of a binary layer and its distance transforms. For a given
target the transform can be computed and mapped through w() in a preprocessing step,
after which matching to any subsequent image takes O(number of pixels) irrespective
of the number of code values.

5 Illumination Normalization

5.1 The Processing Sequence

This section describes our image preprocessing method. It incorporates a series of steps
chosen to counter the effects of illumination variations, local shadowing and highlights,
while still preserving the essential elements of visual appearance for use in recognition.
Although not done by design, the final chain is reminiscent of certain preprocessing
stages found in the mammalian visual cortex. In detail, the steps are as follows.

Gamma Correction. This is a nonlinear gray-level transformation that replaces gray-
level I with Iγ (for γ > 0) or log(I) (for γ = 0), where γ ∈ [0, 1] is a user-defined
parameter. It has the effect of enhancing the local dynamic range of the image in dark or
shadowed regions, while compressing it in bright regions and at highlights. The basic
principle is that the intensity of the light reflected from an object is the product of the
incoming illumination L (which is piecewise smooth for the most part) and the local

2 w is monotonically increasing for a distance metric and monotonically decreasing for a simi-
larity one. In D, note that each pixel in Y is matched to the nearest pixel with the same code
in X. This is not symmetric between X and Y even if the underlying distance d is, but it can
be symmetrized if desired.
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surface reflectance R (which carries detailed object-level appearance information). We
want to recover object-level information independent of illumination, and taking logs
makes the task easier by converting the product into a sum: for constant local illumina-
tion, a given reflectance step produces a given step in log(I) irrespective of the actual
intensity of the illumination. In practice a full log transformation is often too strong,
tending to over-amplify the noise in dark regions of the image, but a power law with
exponent γ in the range [0, 0.5] is a good compromise. Here we use γ = 0.2 as the
default setting.

Difference of Gaussian (DoG) Filtering. Gamma correction does not remove the in-
fluence of overall intensity gradients such as shading effects. Shading induced by sur-
face structure is potentially a useful visual cue but it is predominantly low frequency
spatial information that is hard to separate from effects caused by illumination gradi-
ents. High pass filtering removes both the useful and the incidental information, thus
simplifying the recognition problem and in many cases increasing the overall system
performance. Similarly, suppressing the highest spatial frequencies reduces aliasing and
noise, and in practice it often manages to do so without destroying too much of the un-
derlying signal on which recognition needs to be based. DoG filtering is a convenient
way to obtain the resulting bandpass behaviour. Fine spatial detail is critically impor-
tant for recognition so the inner (smaller) Gaussian is typically quite narrow (σ0 ≤ 1
pixel), while the outer one might have σ1 of 2–4 pixels or more, depending on the
spatial frequency at which low frequency information becomes misleading rather than
informative. Given the strong lighting variations in our datasets we find that σ1 ≈ 2
typically gives the best results, but values up to about 4 are not too damaging and may
be preferable for datasets with less extreme lighting variations. LBP and LTP seem to
benefit from a little smoothing (σ0 ≈ 1), perhaps because pixel based voting is sensitive
to aliasing artifacts. Below we use σ0 = 1.0 and σ1 = 2.0 by default3.

We implement the filters using explicit convolution. If the face is part of a larger
image the gamma correction and prefilter should be run on an appropriate region of this
before cutting out the face image. Otherwise extend-as-constant boundary conditions
should be used: using extend-as-zero or wrap-around (FFT) boundary conditions sig-
nificantly reduces the overall performance, in part because it introduces strong gradients
at the image borders that disturb the subsequent contrast equalization stage. If DoG is
run without prior gamma normalization, the resulting images clearly show the extent to
which local contrast (and hence visual detail) is reduced in shadowed regions.

Masking. If a mask is needed to suppress facial regions that are felt to be irrelevant
or too variable, it should be applied at this point. Otherwise, either strong artificial
gray-level edges are introduced into the convolution, or invisible regions are taken into
account during contrast equalization.

3 Curiously, for some datasets it also helps to offset the center of the larger filter by 1–2 pix-
els relative to the center of the smaller one, so that the final prefilter is effectively the sum
of a centered DoG and a low pass spatial derivative. The best direction for the displacement
is somewhat variable but typically diagonal. The effect is not consistent enough to be recom-
mended practice, but it might repay further investigation.
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Contrast Equalization. The final step of our preprocessing chain globally rescales the
image intensities to standardize a robust measure of overall contrast or intensity varia-
tion. It is important to use a robust estimator because the signal typically still contains a
small admixture of extreme values produced by highlights, garbage at the image borders
and small dark regions such as nostrils. One could, e.g., use the median of the absolute
value of the signal for this, but here we have preferred a simple and rapid approximation
based on a two stage process:

I(x, y) ← I(x, y)
(mean(|I(x′, y′)|a))1/a

(5)

I(x, y) ← I(x, y)
(mean(min(τ, |I(x′, y′)|)a))1/a

(6)

Here, a is a strongly compressive exponent that reduces the influence of large values,
τ is a threshold used to truncate large values after the first phase of normalization, and
the mean is over the whole (unmasked part of the) image. By default we use α = 0.1
and τ = 10.

The resulting image is now well scaled but it can still contain extreme values. To
reduce their influence on subsequent stages of processing, we finally apply a nonlinear
function to compress over-large values. Here we use the hyperbolic tangent I(x, y) ←
τ tanh(I(x, y)/τ), thus limiting I to the range (−τ, τ).

5.2 Robustness and Computation Time

To illustrate the behavior of the proposed preprocessing method, we examine its effect
on the LBP histogram feature set. Fig. 5 shows a matching pair of target and query
images chosen randomly from the FRGC dataset (see below). LBP features are ex-
tracted from corresponding local regions of the two images (the white squares in fig. 5),
both before and after illumination normalization. The resulting histograms are shown
in fig. 6. It can be seen that without illumination normalization the descriptors of the

(a) (b)

Fig. 5. Two face images from the same subject. The LBP histograms from the marked region are
shown in fig. 6.
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Fig. 6. LBP histograms for the marked region in fig. 5, before (a) and after (b) illumination nor-
malization

two images are very different, but that this is significantly reduced by normalization.
In fact, the χ2 distance between the two spatial histograms reduces from 93.4 before
normalization to 25.0 after it.

Since run time is a critical factor in many practical applications, it is also interesting
to consider the computational load of our normalization chain. Our method uses only
simple closed-form image processing operations so it is much more efficient than ones
that require expensive iterative optimizations such as Logarithmic Total Variation [8]
and anisotropic diffusion [10]. Our (unoptimized Matlab) implementation takes only
about 50 ms to process a 120×120 pixel face image on a 2.8 GHz P4, allowing face
preprocessing to be performed in real time. In comparison, the current implementation
of LTV is about 300 times slower.

6 Experiments

We now present experiments that illustrate the effectiveness of our method using three
publicly available face datasets with large illumination variations: Face Recognition
Grand Challenge version 1 experiment 1.0.4 (‘FRGC-104’) [19]; Extended Yale Face
Database B (‘Extended Yale-B’) [15]; and CMU PIE [22].

6.1 Experimental Settings

We use only frontal face views but lighting, expression and identity may all vary. All of
the images undergo the same geometric normalization prior to analysis: conversion to
8 bit gray-scale images; rigid scaling and image rotation to place the centers of the two
eyes at fixed positions, using the eye coordinates supplied with the original datasets;
and image cropping to 120×120 pixels.

The default settings of the various parameters of our methods are summarized in
table 1. Unless otherwise noted, these apply to all experiments. General guidelines on
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Table 1. Default parameter settings for our methods

Procedure Parameter Value
Gamma Correction γ 0.2
DoG Filtering σ0 1

σ1 2
Contrast Equalization α 0.1

τ 10
LTP t 0.1-0.2
LBP/LTP χ2 cell size 8×8

(a) (b)

Fig. 7. Examples of images from FRGC-104: (a) target images (upper row) and query images
(lower row) without illumination preprocessing; (b) the corresponding illumination normalized
images from the proposed preprocessing chain

how to set these parameters can be found in section 5. We find that the proposed pre-
processing method gives similar results over a broad range of parameter settings, which
greatly facilitates the selection of parameters.

For comparison, we also tested the LTP/DT features with our preprocessing chain
replaced with several alternative illumination normalization methods including stan-
dard histogram equalization (HE), Self-Quotient Image (SQI [23]), Multiscale Retinex
(MSR [13]), Logarithmic Total Variation (LTV [8]) and Gross & Brajovic’s anisotropic
smoothing (GB [10]). The implementations of these algorithms were based in part on the
publicly available Torch3Vision toolbox (http://torch3vision.idiap.ch)
with its default or recommended parameter settings. We would also like to thank Ter-
rence Chen for making his implementation of LTV [8] available to us.

Although we do not show the results here owing to lack of space, our preprocessing
method also gives substantial performance gains for the other image descriptors and
recognition algorithms tested including eigen- and Fisher-faces under a range of de-
scriptor normalizations and distance metrics, kernelized versions of these, and Gabor
features.

6.2 Results on FRGC-104

We now show results on the dataset of the FRGC 1.0.4 experiment [19]. This dataset
is challenging because, although the gallery images were obtained under carefully con-

http://torch3vision.idiap.ch
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Fig. 8. Overall results for the proposed methods on FRGC-104

trolled conditions, the probe images were captured in uncontrolled indoor and outdoor
settings. Fig. 7 shows some example images. There are large changes in illumination,
appearance and expression. For the experiments reported here we use nearest-neighbour
matching of each of the 943 probe images against each of the 943 gallery images. The
training images are not used at all.

Fig. 8 shows the extent to which standard LBP can be improved by combining the
three enhancements proposed in this paper: using preprocessing (PP); replacing LBP
with LTP; replacing local histogramming and the χ2 histogram distance with the Dis-
tance Transform based similarity metric (DT). Overall the absolute recognition rate
is increased by about 45% relative to standard unpreprocessed LBP/χ2. Preprocessing
alone boosts the performance by 37% (from 41.6% to 79.0%). Replacing LBP with LTP
improves the recognition rate to 80.4% and adding DT further improves it to 86.3%.
LTP consistently outperforms LBP by a small margin, and the DT based similarity met-
ric significantly improves on χ2 histogram distance independent of the local region
size. By way of comparison, the best previous performance that we are aware of on this
dataset (unfortunately for a different and hence not strictly comparable experimental
setup) is 78.0% [16].

To evaluate the performance of our preprocessing chain, we replaced it with several
competing illumination normalization methods. The results are shown in fig. 9. Our
method significantly outperforms the other ones tested. In particular, the performance of
the sophisticated methods GB and LTV is disappointing on this dataset (c.f . their results
on Yale-B below). It seems that on average they remove too much information during
normalization. The reasons for this deserve further investigation. Note that besides large
lighting variations, the dataset contains various other commonly encountered variations
including ageing effects and image blurring.
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Fig. 9. Comparison of recognition rates of different preprocessing methods on the FRGC-104
database with LTP/DT features (%)

(a) (b)

Fig. 10. Examples of images of one person from the Extended Yale-B frontal database. The
columns respectively give images from subsets 1 to 5. (a) input images. (b) the corresponding
illumination normalized images from our preprocessing chain.

6.3 Results on Extended Yale-B

The Yale Face Dataset B [4] containing 10 people under 64 different illumination condi-
tions has been the de facto standard for studies of variable lighting over the past decade.
It was recently updated to the Extended Yale Face Database B [15], containing 38 sub-
jects under 9 poses and 64 illumination conditions. In both cases the images are divided
into five subsets according to the angle between the light source direction and the central
camera axis (12◦, 25◦, 50◦, 77◦, 90◦). Example images are shown in fig. 10. For our ex-
periments, the images with the most neutral light sources (‘A+000E+00’) were used as
the gallery, and all frontal images of each of the standard subsets 1–5 were used as probes
(2414 images of 38 subjects for the Extended dataset, 640 of 10 for the standard one).
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Table 2. Overall recognition rates (%) on Ex-
tended Yale-B

Subset No.(number of probes)
1 2 3 4 5

Methods (363) (456) (455) (526) (714)
LBP/χ2 100.0 100.0 97.6 65.2 44.4
PP+LBP/χ2 100.0 100.0 99.8 97.3 87.5
PP+LTP/χ2 100.0 100.0 100.0 98.1 97.1
PP+LBP/DT 100.0 100.0 100.0 99.4 95.2
PP+LTP/DT 100.0 100.0 100.0 99.2 97.2

Table 3. Recognition rates (%) with different
preprocessing methods on Extended Yale-B
database

Subset No.(number of probes)
1 2 3 4 5

Methods (263) (456) (455) (526) (714)
w/o 100.0 100.0 97.1 66.8 60.6
HE 100.0 100.0 97.4 76.8 66.8
MSR 100.0 99.8 96.7 93.6 82.1
SQI 100.0 99.8 97.8 94.1 82.4
GB 100.0 100.0 99.8 96.9 90.6
LTV 100.0 100.0 98.4 98.9 97.6
Ours 100.0 100.0 100.0 99.2 97.2

Table 4. Recognition Rates with different preprocessing methods on the CMU-PIE database (%)

Methods HE MSR SQI GB LTV Ours
Accuracy 98.3 98.3 98.5 99.7 100.0 100.0

Our LTP/DT method gives perfect results on all 5 subsets of standard Yale-B4. On
Extended Yale-B, the overall performance of our methods is shown in table 2 and the
effect of using different illumination normalization methods with LTP/DT is shown in
table 3. In table 2, note that for the most difficult subset (5), including either LTP or the
distance transform increases performance over PP+LBP/χ2 by respectively about 10.0%
and 8.0%. As the first row of table 3 indicates, even without image preprocessing the
system performs quite well under the mild lighting changes of subsets 1–3 (c.f . fig. 10).
However its performance drops significantly under the more extreme lighting conditions
of subsets 4–5. In these cases, illumination normalizers such as LTV [8] and GB [10]
significantly improve the accuracy. Our three-stage preprocessing chain achieves the
top performance on subsets 3–4 and is beaten only marginally by LTV on set 5. As
mentioned above, LTV is also about 300 times slower than our preprocessing method.

6.4 Results on the CMU PIE Database

CMUPIE[22] isanotherdataset that isoftenusedforstudiesof illuminationvariations.We
tested a subset containing frontal images of 68 individuals illuminated from 21 directions.
Images of one individual are shown in fig. 11. As before, the images with the most neutral
lighting are used for the gallery and all of the remaining images are used as probes. When
preprocessing is included, all of our LBP and LTP based schemes achieve 100.0% on this
dataset. Comparative results for LTP/DT with different preprocessing methods are shown
in table 4. As before, our preprocessing chain and LTV are the top performers.

4 For comparison, on Yale-B subsets 2,3,4: Harmonic image Exemplars give 100, 99.7, 96.9%
[25]; nine point of light gives 100, 100, 97.2% [14]; and Gradient Angle gives 100, 100,
98.6% [7]. These authors do not test on the most difficult set, 5.
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(a) (b)

Fig. 11. Example images of one person from the CMU PIE database: (a) original images; (b) the
corresponding normalized images obtained with the proposed preprocessing chain

7 Conclusions

We have presented new methods for face recognition under uncontrolled lighting based
on robust preprocessing and an extension of the Local Binary Pattern (LBP) local tex-
ture descriptor. There are three main contributions: (i) a simple, efficient image pre-
processing chain whose practical recognition performance is comparable to or better
than current (often much more complex) illumination normalization methods; (ii) a
rich descriptor for local texture called Local Ternary Patterns (LTP) that generalizes
LBP while fragmenting less under noise in uniform regions; and (iii) a distance trans-
form based similarity metric that captures the local structure and geometric variations
of LBP/LTP face images better than the simple grids of histograms that are currently
used. The combination of these enhancements provides very promising performance on
three well-known face datasets that contain widely varying lighting conditions.

Work in progress includes experiments on the much larger FRGC 2.0.4 dataset and
tests against subspace based recognition methods.
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Abstract. In this paper, we propose a novel appearance-based representation,
called Structured Ordinal Feature (SOF). SOF is a binary string encoded by com-
bining eight ordinal blocks in a circle symmetrically. SOF is invariant to lin-
ear transformations on images and is flexible enough to represent different local
structures of different complexity. We further extend SOF to Multi-scale Struc-
tured Ordinal Feature (MSOF) by concatenating binary strings of multi-scale
SOFs at a fix position. In this way, MSOF encodes not only microstructure but
also macrostructure of image patterns, thus provides a more powerful image rep-
resentation. We also present an efficient algorithm for computing MSOF using
integral images. Based on MSOF, statistical analysis and learning are performed
to select most effective features and construct classifiers. The proposed method is
evaluated with face recognition experiments, in which we achieve a high rank-1
recognition rate of 98.24% on FERET database.

1 Introduction

Object recognition from images is a challenging problem in computer vision. The main
difficulties arise due to many uncertainties such as viewpoint and illumination changes.
To overcome such problems, appearance-based object representation has been a hot is-
sue in the past two decades. Among these, PCA [17] and LDA [2] are two classical
linear methods that have significantly advanced object recognition techniques. But lin-
ear, holistic appearance-based methods can not capture subtleties of various objects,
and holistic features are unstable under various illumination changes. It is believed that
localized appearance-based features, which reflect the intrinsic properties of an object,
can be more powerful for object recognition. Thus local features have been investi-
gated a lot by researchers in recent years, such as Local feature analysis (LFA) [10],
Gabor wavelet-based features [5,19,7], Local Binary Patterns (LBP) [1], and ordinal
measures [15].

Local Binary Pattern (LBP) is a powerful local descriptor for microfeatures of im-
ages [9]. The LBP operator labels the pixels of an image by thresholding the 3 × 3-
neighborhood of each pixel with the center value and considering the result as a binary
number. Ahonen et al. proposed a novel approach for face recognition, which takes ad-
vantage of the Local Binary Pattern (LBP) histogram [1]. However, the original LBP

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 183–192, 2007.
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has its small spatial support area, hence the bit-wise comparison therein made between
two single pixel values is much affected by noise. Moreover, features calculated in the
local 3 × 3 neighborhood cannot capture larger scale structure (macrostructure) that
may be dominant features of objects.

Recently, ordinal measure is discussed frequently as a method for representing lo-
cal image structures. Ordinal features are defined based on the qualitative relation-
ship between two image regions and are robust against various intra-class variations
[11,15,16]. For example, they are invariant to linear transformations on images and
is flexible enough to represent different local structures of different complexity. Sinha
[15] shows that several ordinal measures on facial images, such as those between eye
and forehead and between mouth and cheek, are invariant with different persons and
imaging conditions, and thereby develops a ratio-template for face detection. Schnei-
derman [13] also uses an ordinal representation for face detection. While in the task of
face recognition, which is a more complex problem than face detection, Thoresz [16]
believes that ordinal features are not suited because they are too weak. Yet Liao et al.
propose an ordinal feature based face recognition method for the first try, and obtained
a promising results [6].

In this work, we propose a novel representation, called Structured Ordinal Feature
(SOF). It is believed that the human vision system uses a series of levels of represen-
tation, with increasing complexity. Since one single ordinal feature is too simple to
represent complex structures, we propose to combine several ordinal measures together
to form a more powerful encoding of local image structures. SOF is a binary string
encoded by combining eight ordinal blocks in a circle symmetrically. Using integral
images, the comparison of average intensities between two blocks can be calculated
very efficiently. Furthermore, Multi-scale Structured Ordinal Feature (MSOF) can be
derived via concatenating binary strings of multi-scale SOFs at a fix position. This way,
MSOF encodes not only microstructure but also macrostructure of image patterns, thus
provides a more complete image representation. Based on MSOF, we define several dis-
similarity measures, and perform statistical learning to select the most effective features
and construct classifiers. Finally, we apply it to face recognition to illustrate the power
and effectiveness of our proposed method.

The rest of this paper is organized as follows: In Section 2, the SOF and MSOF
representations are introduced, and several dissimilarity measures based on MSOF are
defined for discrimination tasks. In Section 3, statistical learning is applied for MSOF-
based feature selection and classifier construction. Later, experiments with face recog-
nition are shown in Section 4, and finally we conclude this paper in Section 5.

2 Structured Ordinal Feature

2.1 Ordinal Feature

Ordinal features come from a simple and straightforward concept that we often use. For
example, we could easily rank or order the heights or weights of two persons, but it
is hard to answer their precise differences. For computer vision, the absolute intensity
information associated with an object can vary because it can change under various
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illumination settings. However, ordinal relationships among neighborhood image pixels
or regions present some stability with such changes and reflect the intrinsic natures of
the object.

An ordinal feature encodes an ordinal relationship between two concept. Fig.1 gives
an example in which the average intensities between regions A and B are compared
to give the ordinal code of 1 or 0. The information entropy of the ordinal measure is
maximized because the ordinal code has nearly equal probability of being 1 or 0 for
arbitrary patterns.

Fig. 1. Ordinal measure of relationship between two regions. An arrow points from the darker
region to the brighter one. Left: Region A is darker than B, i.e. A ≺ B. Right: Region A is
brighter than B, i.e. A � B.

2.2 Structured Ordinal Feature

It is believed that the human vision system uses a series of levels of representations,
with increasing complexity. Since one single ordinal feature is too simple to represent
complex structures, we propose to combine several ordinal measures together to form a
more powerful encoding of local image structures. We call this combination of ordinal
encoding Structured Ordinal Feature (SOF). SOF is a binary string encoded by com-
bining eight square ordinal blocks in a circle symmetrically, which is inspired by the
encoding of local binary patterns [9]. Fig.2 illustrates an example of how SOF encoded.

There are two parameters in SOF: one is the size s of the square blocks, the other is
the radius r of the circle. The parameter pair (s, r) denotes the scale of SOF. An SOF
feature of scale (s, r) at pixel location (x, y) can be denoted as SOFs,r(x, y).

Structured Ordinal Feature extends the original ordinal feature, and can be used to
represent various image structures, which may be some intrinsic properties of image
object. The original ordinal feature can only show the contrast information between
two regions, while using SOF, more local image structures can be represented. Fig. 3
shows some image structures that can only be represented by SOF. These structures are
basic properties within many image objects. Therefore, SOF provides a more efficient
and flexible way for appearance-based object representation.

Note that the scalar values of averages over blocks can be computed very efficiently
[14] from the summed-area table [3] or integral image [18]. For this reason, the compu-
tation of SOF is very fast. Also note that the comparison result between averages of two
blocks is invariant when the image is linearly transformed, thus the encoding of SOF is
invariant to linear transformations on images.



186 S. Liao et al.

Fig. 2. An example of SOF encoding. Eight square ordinal blocks are combined in a circle sym-
metrically to form a structured filter. The number in each block is the average intensity within the
corresponding image region. The arrows represent the ordinal relationships. According to these
relationships, the result is encoded as a binary string.

a b c d

Fig. 3. Some image structures represented by SOF. a. Centered darker region; b. Centered brighter
region; c. Brighter strip; d. Cross strips.

2.3 Multi-scale Structured Ordinal Feature

To construct a more complete image representation, we develop the operator of multi-
scale SOF (MSOF). MSOF can be derived via concatenating binary strings of multi-
scale SOFs at a fix position. See Fig.4 for an example. Suppose there are n scales of
SOF, then an MSOF at location (x, y) is encoded as

MSOF (x, y) = SOFs0,r0(x, y) ⊕ SOFs1,r1(x, y) ⊕ · · · ⊕ SOFsn−1,rn−1(x, y),

where ⊕ denotes binary concatenation operator. In this way, MSOF encodes not only
microstructure but also macrostructure of image patterns, thus provides a more com-
plete image representation.

The scale parameters of MSOF should be carefully designed so that the operator will
cover the neighborhood as well as possible while minimizing the amount of redundant
information. Consequently, the square blocks are set to fill the eight directions well
within the same circle, while touching each other as well as possible between circles.
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Fig. 4. An example of MSOF operator. Three scales of SOFs are combined at the center. The
encodings are concatenated to form a binary string of 24 bits.

2.4 Dissimilarity Measure

For discrimination tasks, the Hamming distance can be used between two MSOFs at
the same position. Since the encoding of MSOF is a concatenated binary string at a
fix position, Hamming distance between two MSOFs at the same position can be used
to measure the difference of two images at that position. Let Hamm(·, ·) denote the
Hamming distance between two binary strings, then distance between two MSOFs at
location (x, y) of image I ′ and I ′′ can be measured as

dhamm(x, y) = Hamm(MSOF ′(x, y), MSOF ′′(x, y)) (1)

This kind of difference measures the percentage of bitwise difference between two
MSOFs, ranging from 0 to 1.

Consequently, Hamming distances at all positions provides a discriminative feature
set for object recognition, and classifiers can be further developed based on these fea-
tures. One simple classifier is Nearest Neighbor (NN) classifier, using MSOF distance
summed over the whole image as a dissimilarity measure. Suppose all images are H
pixels high and W pixels wide, then such dissimilarity measure between two images I ′

and I ′′ can be defined as

dhamm =
1

H × W

∑

x,y

dhamm(x, y) (2)

The NN classifier can be used to provide a baseline performance. The latter section will
demonstrate promising results given by MSOF-based NN classifier.

Another discriminative feature set can be constructed considering spacial informa-
tion. Let B = {B0, B1, · · · , Bm−1} be a set of m-1 blocks of various sizes and posi-
tions over the whole image, then a set of features containing local region information
can be defined as

dhamm(Bi) =
1

Hi × Wi

∑

(x,y)∈Bi

dhamm(x, y), i = 0, 1, · · · , m − 1, (3)
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where Hi and Wi are height and width of block Bi respectively. Accordingly m dis-
criminative features are defined for object recognition. We call them block-based MSOF
Hamming dissimilarity measures.

Hamming distance based MSOF dissimilarity measure is effective when images are
well aligned. However, based on pixel-wise comparison, Hamming distances are influ-
enced by image misalignment. For more robust and efficient discrimination, we con-
struct a feature set based on spatially distributed histograms, which are also used in [1].
Using the above notations, the MSOF histogram is defined as

Hist(Bi, j) =
1

Hi × Wi × n

∑

(x,y)∈Bi

n∑

k=0

I{SOFsk,rk
(x, y) = j},

i = 0, 1, · · · , m − 1, j = 0, 1, · · · , L − 1,

(4)

where j is an SOF code, and L = 28, thus the histogram has 256 bins. Based on these
spatially distributed histograms, discriminative features can be defined as difference
between two corresponding histogram bins:

dhist(Bi, j) = |Hist′(Bi, j) − Hist′′(Bi, j)|,
i = 0, 1, · · · , m − 1, j = 0, 1, · · · , L − 1.

(5)

We call the above dissimilarity measure histogram-based MSOF dissimilarity mea-
sure. These features provide local histogram information and hence will be more effi-
cient for discrimination tasks. However, considering blocks of all sizes and locations,
the feature dimensions will be very large (m × 256). Therefore, a proper technique
should be used to reduce the dimension and construct classifiers.

3 Statistical Learning for Object Recognition

The above MSOF-based dissimilarity measures provide an over-complete discrimina-
tive feature set. The only question remained is how to use them to construct a powerful
classifier. Because those excessive measures contain much redundant information, a
further processing is needed to remove the redundancy and build effective classifiers.
In this paper we use Gentle AdaBoost algorithm [4] to select the most effective MSOF-
based dissimilarity measures.

Boosting can be viewed as a stage-wise approximation to an additive logistic regres-
sion model using Bernoulli log-likelihood as a criterion [4]. Developed by Friedman et
al, Gentle AdaBoost modifies the popular version of the Real AdaBoost procedure [12],
using Newton stepping rather than exact optimization at each step. Empirical evidence
suggests that Gentle AdaBoost is a more conservative algorithm that has similar perfor-
mance to both the Real AdaBoost and LogitBoost algorithms, and often outperforms
them both, especially when stability is an issue.

While an AdaBoost procedure essentially learns a two-class classifier, we convert the
multi-class problem into a two-class one using the idea of intra- and extra-class differ-
ence [8]. However, here the difference data are derived from the MSOF-based dissim-
ilarity measures rather than from the images. An MSOF-based dissimilarity measure is
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taken between two MSOF representations, which is intra-class if the two images are of
the same class, or extra-class if not. The MSOF-based dissimilarity measures are used to
construct weak classifiers for the above AdaBoost learning. The best current weak clas-
sifier is the one for which the weighted intra-class MSOF-based dissimilarity measure
(over the training set) is minimized while that of the extra-class is maximized. After
AdaBoost learning, the feature dimensions of the MSOF-based dissimilarity measures
are dramatically reduced, meanwhile a powerful classifier is constructed.

With the two-class scheme and the learned classifier, the object recognition proce-
dure will work in the following way: It takes a probe image and a gallery image as the
input, and computes a feature vector from the two images using the selected MSOF-
based dissimilarity measures, then it calculates a similarity score for the feature vector
using the learned AdaBoost classifier. Finally a decision is made based on the score,
to classify the feature vector into the intra-class (the same objects) or the extra-class
(different objects).

4 Experiments

To evaluate the proposed MSOF-based representation, we apply it to face recognition,
which is a typical object discrimination task and also a hard problem. Experiment is
evaluated on FERET fa/fb face database. Face images are cropped into 150 pixels high
and 130 pixels wide, according to their eye coordinates. The non-face area is excluded
using an elliptical mask, and the gray histogram within the elliptical mask is equalized.
The FERET training CD contains 1002 frontal face images from 429 subjects. The test
set contains 1196 galleries and 1195 probes from 1196 subjects.

First, we want to show some basic effects of MSOF filtering. Fig. 5 shows three exam-
ples of face images, and Fig. 6 demonstrates the corresponding filtered images, each of
which is filtered by a 5-scale MSOF operator. The scale parameters we use in this paper
are: (1,1), (3,3), (5,7), (9,14), (17,27), which are determined according to the principle
we mentioned in Section 2.3. From Fig. 6 we could see that large scale of SOF encodes
macrostructure of image objects, while small scale reveals fine details of local structures.
Hence combining all these scales, MSOF provides a complete object representation.

Dissimilarity measures of a pair of intra-personal images and a pair of extra-personal
ones are shown in Fig. 5. The difference image is generated using Equ. (1), where the
brighter pixels indicate larger differences. From Fig. 5 we could see clearly that images
of extra-personal pair have larger differences than that of intra-personal pair. Using
Equation of (2), we could exactly measure the dissimilarity between two images. In
this example, the intra-personal dissimilarity is 0.1603, while the extra-personal one is
0.2974. It follows that the MSOF-based dissimilarity measure is able to provide promis-
ing power for discriminating intra-/extra-class differences.

The next experiment is designed to evaluate the baseline performance of NN classi-
fier using dissimilarity measure of Equ. (2). We follow the standard FERET test proto-
col of fa/fb face database, which contains 1196 gallery images and 1195 probe images.
One advantage of MSOF-based NN classifier is that it could be directly used without
training. The cumulative match score curve is shown in Fig. 7. The rank-1 recognition
rate is 80%, a promising result.
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A1 A2 B

C D

Fig. 5. Examples of dissimilarity measures based on MSOF. The first row: original face images,
where A1 and A2 are the same person, and B is another person. The second row: difference
images calculated via Equ. (1), where C is generated using A1 and A2, and D is generated using
A2 and B. The total dissimilarity of (A1, A2) pair computed with Equ. (2) is 0.1603, while that
of (A2, B) pair is 0.2974.

Fig. 6. Examples of MSOF filtered images with 5 scales. Each column is corresponding to one
scale, which becomes larger from left to right. For each scale, 8-bits binary string of each SOF
encoding is converted to a decimal number ranging from 0 to 255, which is displayed as a pixel
label here. Each row is generated with one face image. The three rows are corresponding to image
A1, A2, and B in Fig. 5 respectively.

Finally, we train two AdaBoost classifiers based on MSOF dissimilarity measure, us-
ing the FERET training set of 1002 images. The first AdaBoost classifier is constructed
using block-based MSOF Hamming dissimilarity measure (Equ. (3)), and the second
one is using histogram-based MSOF dissimilarity measure (Equ. (5)). The results are
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Fig. 7. Cumulative match score curves. “MSOF Hist” is for histogram-based MSOF dissimilarity
measure (Equ. (5)); “MSOF Hamm” is for block-based MSOF Hamming dissimilarity measure
(Equ. (3)); “MSOF NN” is for Nearest Neighbor classifier using dissimilarity measure of Equ.
(2); “Ordinal Feature” is the result of [6], and “LBP” is that of [1].

compared with the approach based on LBP [1] and Ordinal Feature [6] shown in Fig. 7.
From the cumulative match score curve, we could see that classifier using histogram-
based MSOF dissimilarity measure outperforms all other algorithms, though Ordinal
Feature of [6] is slightly better before rank3. The rank-1 recognition rate of histogram-
based MSOF is 98.24%, which is an excellent result on FERET database. The perfor-
mance of block-based MSOF Hamming dissimilarity measure classifier is not the best,
but it is also outperforms LBP after rank-8, and it achieves high recognition rates near
that of Ordinal Feature after rank-20.

5 Summary and Conclusions

This paper proposes a novel appearance-based representation, called Structured Ordinal
Feature (SOF). We show that SOF is invariant to linear transformations on images and
can be efficiently computed. It can be further extended to Multi-scale Structured Ordinal
Feature (MSOF) to encode both microstructure and macrostructure of image patterns.
We also provide several dissimilarity measures based on MSOF for object recognition.
Finally we apply MSOF for face recognition. The experiments on FERET database il-
lustrate that our proposed method achieves an excellent performance. We believe that
the success of SOF is not limited to faces. Since SOF is general for appearance-based
object representation, our future work will be applying SOF on other object classifica-
tion or recognition problems to investigate its power.
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SODA-Boosting and Its Application to Gender
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Abstract. In this paper we propose a novel boosting based classification
algorithm, SODA-Boosting (where SODA stands for Second Order Dis-
criminant Analysis). Unlike the conventional AdaBoost based algorithms
widely applied in computer vision, SODA-Boosting does not involve time
consuming procedures to search a huge feature pool in every iteration
during the training stage. Instead, in each iteration SODA-Boosting effi-
ciently computes discriminative weak classifiers in closed-form, based on
reasonable hypotheses on the distribution of the weighted training sam-
ples. As an application, SODA-Boosting is employed for image based
gender recognition. Experimental results on publicly available FERET
database are reported. The proposed algorithm achieved accuracy com-
parable to state-of-the-art approaches, and demonstrated superior per-
formance to relevant boosting based algorithms.

1 Introduction

Automatic recognition of demographic properties, e.g. gender, age and ethnicity,
from face images has many applications in intelligent surveillance, demographic
statistics and human-computer interaction. Since early 1990s, gender recognition
has attracted considerable attention of the computer vision and patter recogni-
tion community for a long time. Early works on this topic were mostly based
on neural network [1,2,3,4], where promising performance (more than 90% in
accuracy) were reported, although most experiments were conducted on rather
small databases (consisting of dozens of images, except [4] where the FERET
database was used). From the aspect of patter recognition, gender recognition
is a typical two-class problem. In recent years, two most successful “off-the-
shelf” classifiers, i.e. SVM [5,6] and AdaBoost [7,8,9], seem to have dominated
in this area, because of their higher accuracy and robustness compared to earlier
techniques. Both classifiers achieve comparably good recognition accuracy [9].
However, AdaBoost based gender recognizers are generally faster than SVM,
which may be a desirable advantage for real-time applications.

In this paper, we present a novel classification algorithm for two-class prob-
lem, namely SODA-Boosting, and apply it to gender recognition. This algorithm
is along the AdaBoost line. The main contribution lies in the methodology to dis-
cover the most discriminative features in an effective and efficient way. AdaBoost
[10] is among the most influential recent advances in machine learning, and has
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been widely adopted in computer vision problems. AdaBoost provides an ele-
gant framework to aggregate weak classifiers into a strong one with theoretically
provable generalization performance. In computer vision community, the most
common practice of applying AdaBoost is defining a huge pool of candidate
weak classifiers, and in each iteration seeking the best one through exhaustively
traversing the whole feature pool. In order to evade the drawbacks of that ap-
proach such as computational load, the proposed algorithm takes a different
approach, attempting to directly compute the discriminative features. The pro-
posed algorithm is related to recent algorithms [11,12] which are based on similar
motivation. However, SODA-Boosting makes more comprehensive hypotheses on
the distribution of the two classes, resulting a stronger learning procedure. The
effectiveness of the proposed algorithm is demonstrated by gender recognition
experiments reported in this paper, where it achieved accuracy comparable to
state-of-the-art gender recognizers, surpassing related boosting algorithms in
performance.

Rest of this paper is organized as follows: In Section 2 the SODA-Boosting al-
gorithm is introduced and discussed in detail. Section 3 presents experimental re-
sults of gender recognition on the FERET database [13], where SODA-Boosting
is compared to many other algorithms. Finally we conclude the paper in Section 4
and briefly discuss future work.

2 SODA-Boosting

Boosting, especially AdaBoost (Adaptive Boost ing) [10], is one of the most im-
portant and influential recent advances in machine learning, regarded by some
researchers as the “best off-the-shelf classifier”. During the recent years, it has
been widely adopted in computer vision, resulting in many successful appli-
cations. As a meta-algorithm that constructs a strong classifier by “boosting”
weak classifiers, the key of employing AdaBoost is to design appropriate “weak
classifiers” (or “weak hypotheses”). In the computer vision community, the most
common practice is defining a huge pool of candidate weak classifiers (depending
on the domain knowledge for the problem of interest), and in each iteration seek-
ing the best one (leading to the lowest classification error rate on the weighted
training sample set) through traversing the whole feature pool. Such a practice
actually treats AdaBoost as a feature selector. This approach has been popular-
ized since successful deployment of Viola-Jones face detector [14]. However, it
has several drawbacks:

– The pre-defined feature pool restricts the optimality of the features that
can ever be discovered, as the features that will be incorporated into the
final classifier are strictly limited to this pool. For example, if linear weak
classifiers are the candidates (which is the case for most applications of
AdaBoost in computer vision), the feature pool is indeed only a very sparse
sampling of the image space (due of the high dimensionality of the space).
Even when the feature pool is “over-complete” (implying that its size is
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larger than the dimensionality of the data space), there are still too few
features to cover the whole space.

– It is computationally expensive. Usually the feature pool is huge, in order to
avoid over-sparse sampling of the feature space. Exhaustive traversing such
a huge pool in every iteration is clearly rather time consuming.

– The design of candidate weak features largely relies on certain domain knowl-
edge of the problem at hand. Therefore the resulted classifier is not generic,
i.e. could not be applied to other problems of different nature. For instance
Viola-Jones classifier [14], where rectangular filters are used as weak clas-
sifiers, cannot be used in an audio related classification problem where the
samples to be classified are MFCC coefficients.

Unlike the conventional practice discussed so far, SODA-Boosting takes another
path to discover the weak classifiers. Instead of pre-defining a feature pool and
searching for “good” features, it attempts to directly compute the weak classifiers
that are ideal for classification purpose, in a computationally efficient way. In the
SODA-Boosting algorithm, we limit the weak classifiers to be “linear-based”, i.e.
each weak hypothesis is reached by linearly projecting the sample onto a certain
vector and thresholding the projection. The key of SODA-Boosting is how to
learn such linear projection vectors and their corresponding thresholds, which is
detailed in the following subsection.

2.1 SODA: Second Order Discriminant Analysis

In the training procedure of AdaBoost, in each boosting iteration one needs to
learn a weak classifier to classify the weighted training samples. In our case, the
goal is to seek a linear projection, and construct an effective weak classifier on
that projection. Clearly, the weak classifier should have sufficient discriminative
power. In SODA-Boosting, we seek such discriminative linear projections via
two different techniques, FLD and MRC. With both techniques, the optimal
linear projections can be computed in closed-form without exhaustive search
or ad-hoc numerical optimization. As we shall see, since both FLD and MRC
seek discriminative linear projections by utilizing statistical moments of (up to)
second order, we categorize them under a common name SODA (Second Order
Discriminant Analysis).

Fisher Linear Discriminant (FLD). FLD is the most well-known technique
to find a discriminative linear projection [15]. Suppose we need to classify two
classes, X+,X− ⊂ Rn. In the training stage we have a labeled sample set
{(x1, y1) , (x2, y2) , . . . , (xN , yN )} where yi ∈ {+1, −1} indicating xi ∈ X+,X−

respectively. In the boosting framework, each training sample is associated with
a weight, say {w1, w2, . . . , wN}. In each iteration, the weights are normalized so
that

∑N
i=1 wi = 1. The weighted means of the two classes are given by:

m+ =
1∑

yi=+1 wi

∑
yi=+1

wixi, (1)

and
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m− =
1∑

yi=−1 wi

∑
yi=−1

wixi (2)

respectively. The weighted scatter matrices are:

S+ =
∑

yi=+1
wi (xi − m+) (xi − m+)T

, (3)

and

S− =
∑

yi=−1
wi (xi − m−) (xi − m−)T

. (4)

Defining within class scatter matrix

SW = S+ + S−, (5)

and between class scatter

SB = (m+ − m−) (m+ − m−)T
. (6)

FLD is the vector wFLD that minimizes criterion

JFLD (w) =
wT SW w
wT SBw

. (7)

And it turns out that

wFLD = S−1
W (m+ − m−) . (8)

The weak classifier associated with the FLD feature is given as

fFLD (x;wFLD, T ) =
{

+1 ,wT
FLDx > T

−1 , else
, (9)

where optimal threshold T is chosen to minimize classification error

ε =
∑

fF LD(xi) �=yi

wi (10)

Maximal Rejection Classifier (MRC). FLD works well when the two classes
are linearly separable (or at least approximately so) and when their covariance
matrices are close to each other. In many practical problems, these conditions
are not met. One especially interesting case is the “target detection” configura-
tion [16], where one class (the target) is surrounded by the other (the clutter),
as illustrated in Figure 1. This configuration is common in many computer vi-
sion problems, among which object detection is a natural example. As the two
classes are by no means linearly separable, the best a linear projection can do
to discriminate the two classes is to minimize the overlap between the projected
samples from the two classes. An intuitive way to achieve this is seeking a pro-
jection vector on which the target class is “squeezed” whereas the clutter class is
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“pushed aside” as much as possible. Based on this idea, Elad et al [16] proposed a
technique called Maximal Rejection Classifier (MRC) to find the discriminative
projections, and applied it to face detection. In [12] Xu and Huang showed that
face recognition can also be modeled as a two-class problem of this type, and
proposed the MRC-Boosting algorithm where the MRC classifiers are aggregated
via boosting.

 

Clutter 

Target 

T1 T2

Projection Vector 

Fig. 1. Target detection configuration and MRC projection

If we treat class X+ as the target and X− as the clutter, the MRC feature is
the projection vector wMRC+ which minimizes criterion functional

JMRC+ (w) =
wT S+w

wT (SW + SB)w
. (11)

This criterion seems much similar to that of FLD (7), as it is also in the form
of a generalized Rayleigh quotient. However, they chase completely different
goals, leading to rather different projection vectors. The MRC feature wMRC+
is found through solving a generalized eigenvalue problem and picking the gen-
eralized eigenvector associated with the smallest eigenvalue. The weak classifier
associated with MRC feature wMRC+ is

fMRC+
(
x;wMRC+, T +

1 , T +
2

)
=

{
+1 , T +

1 ≤ wT
MRC+x ≤ T +

2
−1 , else

, (12)

where the thresholds T +
1 and T +

2 are chosen to minimize classification error,
similar to (10). Note that unlike the FLD classifier, this weak classifier contains
two thresholds, therefore it is not a linear classifier, but “linear-based” [16].
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Similarly, if we instead treat class X− as the target and X+ as the clutter,
we obtain the other MRC feature wMRC− which minimizes

JMRC− (w) =
wT S−w

wT (SW + SB)w
, (13)

and the associated weak classifier

fMRC−
(
x;wMRC−, T−

1 , T−
2

)
=

{
−1 , T−

1 ≤ wT
MRC−x ≤ T−

2
+1 , else

(14)

2.2 The SODA-Boosting Algorithm

The SODA-Boosting algorithm employs AdaBoost framework to aggregate the
SODA classifiers (i.e., FLD and two kinds of MRC classifiers), leading to a
strong classifier. In each boosting iteration, because we don’t know which SODA
feature is appropriate for current distribution of the two classes (represented by
the weighted samples), three hypotheses are made, as illustrated in Figure 2.
The first two hypotheses, MRC+ and MRC−, reflect the cases where X+ is
surrounded by X− and vice versa, respectively. The last hypothesis reflects the
configuration where the two classes are well separated, and can be reasonably
discriminated by FLD. For these hypotheses, we employ techniques discussed
in the previous subsection to obtain corresponding weak classifiers respectively.
Naturally, the one resulting in lowest classification error rate best models current
distribution of the two classes, hence will be selected and included into the final
strong classifier. The algorithm is listed in Algorithm 1.

2.3 Discussion

SODA-Boosting is closely related to two other boosting based classification
algorithms, MRC-Boosting [12] and FisherBoost [11]. MRC-Boosting employs
AdaBoost framework to aggregate MRC classifiers. As shown in [12], it works
well for face recognition. However, just as the original MRC approach [16],
MRC-Boosting was designed specifically for “target detection” type problems, as
illustrated in Figure 1. However, for a general two-class discrimination problem,
we don’t really know whether the distribution of the two classes obey such con-
figuration. Although many problems in computer vision, such as object detection
and face recognition, can be modeled as “target detection”, this assumption is

+ - 

(a) MRC+

- + 

(b) MRC-

- + 

(c) FLD

Fig. 2. Hypotheses made by SODA-Boosting on the distribution of the two classes



SODA-Boosting and Its Application to Gender Recognition 199

Algorithm 1. SODA-Boosting algorithm
Input: {(xi, yi) , i = 1, 2, · · · , N : xi ∈ Rn, yi ∈ {+1, −1}}. The maximal

number of weak classifiers K.

Initialize: wi =

�
1/2N+ , yi = +1
1/2N− , yi = −1

, where N+ and N− are the numbers of

positive and negative samples respectively.
for k = 1, 2, · · · , K do

Compute weighted means m+, m− and scatter matrices S+, S−, using
(1)∼(4) respectively.
Compute FLD feature using (8), obtain the associated weak classifier
fF LD (x) according to (9), and calculate its classification error εF LD.
Compute MRC+ feature by minimizing (11), obtain the associated weak
classifier fMRC+ (x) according to (12), and calculate its classification error
εMRC+.
Compute MRC− feature by minimizing (13), obtain the associated weak
classifier fMRC− (x) according to (14), and calculate its classification error
εMRC−.
Select weak classifier fk (x) ∈ {fF LD, fMRC+, fMRC−} with minimal
classification error εk.
Update weights: wi ← 1

Zk
wi exp [−αkyifk (xi)], where αk = 1

2 ln 1−εk
εk

and

Zk is a normalization factor to ensure
�N

i=1 wi = 1.

end
Output: Strong classifier F (x) = sgn [G (x)] where the classification function

is G (x) =
�K

k=1 αkfk (x).

not likely to be true for a general two-class problem. When we don’t have a
compelling reason that the two classes form a “target detection” configuration,
the features (and the associated weak classifiers) sought by MRC wouldn’t be
effective for classification. On the other hand, FisherBoost does not consider the
“target detection” configuration at all, in each iteration it seeks a FLD classifier
to discriminate the two classes. As we know, FLD is only effective when the two
classes are linearly separable (or at least approximately so). For a complicated
two-class problem, especially after the samples are re-weighted as the boosting
procedure goes on, the distribution of the two classes may not be such case. At
that point, FLD will fail to discover meaningful discriminants.

SODA-Boosting overcomes the limitation of MRC-Boosting and FisherBoost
by including both MRC and FLD classifiers into consideration. FLD and MRC
are complement to each other, working for rather distinct configurations of the
two classes. Considering all these configurations has much stronger discrimi-
native power than just considering one of them. As we shall see in Section 3,
putting together FLD and MRC classifiers is actually not a trivial combination,
it indeed leads to a much stronger learning procedure.
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Besides MRC-Boosting and FisherBoost, another relevant approach which also
attempts to directly compute weak classifiers is KL-Boosting [17]. KL-Boosting
discovers discriminative features by seeking linear projection vectors on which
the Kullback-Leibler divergence between the two classes are maximized. Unfor-
tunately, such definition of discriminative power can not lead to a closed-form
solution, hence an ad-hoc numerical optimization procedure was employed, which
is computationally expensive and relatively difficult for implementation. Unlike
KL-Boosting, SODA-Boosting (also MRC-Boosting and FisherBoost) is able to
find the discriminative features in closed-form, using standard techniques in lin-
ear algebra, hence is more efficient.

3 Experiments

We applied the proposed SODA-Boosting algorithm to gender recognition, and
report in this section experimental results on the FERET database [13].

In our experiments, 4109 frontal face images from the FERET database were
aligned according to eye-corner coordinates supplied with the data, and finally
normalized to 40×40. In order to normalize the illumination effect, all images
were pre-processed to be of zero-mean and unit variance in pixel value. This data
set consists of 703 male individuals and 498 female, the gender ground truth were
manually labeled by viewing full face images (i.e. before the faces were aligned
and cropped out).

In each run of experiments, we randomly partition the data into training and
test set. Each time 80% of the individuals in the database were selected for
training, all their images constitute the training set, and the remaining images
were used for test. Note that we took a protocol similar to that in [9], where
training and test data are separated based on individuals, instead of images
themselves, hence any individual in the training set wouldn’t have any images
in the test set. This is in contrast to some earlier work e.g. [5] where images of
one individual might appear in both training and test set (called “mixed data
sets” in [9]), resulting in a more optimistic estimate of recognition accuracy. The
protocol employed in our experiments and [9], on the other hand, is more close
to the practical scenario where the trained gender recognizer will be tested on
images of people it never saw before, leading to more accurate evaluation of the
generalized performance.

Weconductedgender recognitionexperimentswith10 independent randomdata
partitions, and recorded the average accuracy of different approaches, as shown in
Table 1. For comparison purpose, besides the proposed SODA-Boosting algorithm
we also reported performance of other classifiers, including SVM, AdaBoost with
rectangular filters (used in Viola-Jones face detector [14]) [7], and two algorithms
related to the proposed one: FisherBoost [11] and MRC-Boosting [12].

For SVM (SVM-Light implementation [18]), RBF kernel was used (we also
tried polynomial kernels, but the performance was inferior to RBF kernel). As
reported by [9], the accuracy is sensitive to parameters C and γ. In our experi-
ments, we took C = 1/N (where N = 1600 is the dimensionality of the images)
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Table 1. Gender recognition accuracy

Algorithm Accuracy
SODA-Boosting 92.82%

SVM (γ = 1) 92.38%

SVM (γ = 105) 93.34%

AdaBoost (Viola-Jones) 92.67%

MRC-Boosting (+) 88.69%

MRC-Boosting (−) 89.76%

FisherBoost 89.54%

which is a good choice according to results reported in [9] and two different
γ values, γ = 1 which is the default value of SVM-Light and γ = 105 which
was shown by [9] to be optimal (through exhaustive parameter tuning). The
number of support vectors varies across runs, on average 860 for γ = 105 and
1450 for γ = 1 respectively. For all the boosting based algorithms, K = 500
weak classifiers were used. The performance of SODA-Boosting (with 500 fea-
tures) is better than SVM with default γ, and is slightly inferior, although still
comparable, to SVM with optimal parameter setting (RBF kernel with γ = 105

and C = 1/1600). However, note that SVM employs more features (i.e. support
vectors) than SODA-Boosting.

When compared to other boosting based algorithms, SODA-Boosting consis-
tently worked better. For MRC-Boosting, we conducted experiments with two
versions (marked with +/−) considering male and female as “target” respec-
tively, and both of them achieved inferior performance to SODA-Boosting. In
Figure 3 we compare the accuracy of different boosting algorithms as the number
of weak classifiers increases. It can be seen that SODA-Boosting cleanly exceeded
FisherBoost and two versions of MRC-Boosting everywhere. The asymptotic
accuracy of SODA-Boosting was very similar to conventional AdaBoost based
algorithm [7]. However, thanks to the effort of directly seeking most discrimi-
native features, SODA-Boosting reached the same accuracy with fewer features
than [7]. Although we did not compare SODA-Boosting to recent approach [9]
directly, we conjecture that the comparison would reach similar conclusion, as
[9] shares the same nature (i.e. boosting very weak features) as [7] and they
achieved similar performance. It should be noted that although SODA-Boosting
requires fewer features for the same accuracy, it is usually slower than boost-
ing approaches like [7,9] in classification stage, because those approaches require
much less computation per feature. However, those approaches are specifically
designed to classify images, relying on weak features that are all pre-designed
based on certain domain knowledge, hence bounded to certain classification prob-
lems. On the contrary, SODA-Boosting is a generic algorithm, which is, in theory,
applicable to any two-class problem, just like SVM.

The point especially worth noticing is that SODA-Boosting cleanly exceeded
both MRC-Boosting and FisherBoost in performance, although the latter
two also aggregate FLD and MRC classifiers respectively. This convincingly
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demonstrates that putting together FLD and MRC weak classifiers is not a trivial
combination, it indeed leads to a stronger learning procedure, as we mentioned
in Section 2.
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Fig. 3. Accuracy of different boosting algorithms as the number of classifiers increases

4 Conclusion and Future Work

In this paper, we proposed a novel boosting based classification algorithm called
SODA-Boosting. Unlike conventional AdaBoost based algorithms widely used
in computer vision e.g. [14], SODA-Boosting does not involve any exhaustive
search across a huge feature pool, instead it attempts to directly compute dis-
criminative features in a computationally efficient way. Compared to recent
approaches [11,12] with similar motivation, the proposed algorithm takes into
consideration several distinct hypotheses on the distribution of the two classes,
resulting a stronger learning procedure. Application to gender recognition shows
that SODA-Boosting achieves considerably better performance than those ap-
proaches, reaching accuracy comparable to that of state-of-the-art gender recog-
nizers. In this work, we conducted experiments on the FERET database which
only consists of frontal face images obtained under controlled condition (e.g.
regular illumination). However, in practical applications, image quality seldom
reaches such an ideal level. The images captured from real-world videos usually,
if not always, are of rather poor quality, which means low resolution, arbitrary
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illumination, imaging noises, and most importantly, the faces are often captured
in non-frontal views. As future work, we are interested in applying the proposed
algorithm to these challenging settings.
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Abstract. Small sample size and severe facial variation are two challenging
problems for face recognition. In this paper, we propose the SIS (Single Image
Subspace) approach to address these two problems. To deal with the former one,
we represent each single image as a subspace spanned by its synthesized (shifted)
samples, and employ a newly designed subspace distance metric to measure the
distance of subspaces. To deal with the latter one, we divide a face image into sev-
eral regions, compute the contribution scores of the training samples based on the
extracted subspaces in each region, and aggregate the scores of all the regions to
yield the ultimate recognition result. Experiments on well-known face databases
such as AR, Extended YALE and FERET show that the proposed approach out-
performs some renowned methods not only in the scenario of one training sample
per person, but also in the scenario of multiple training samples per person with
significant facial variations.

1 Introduction

One of the most challenging problems for face recognition is the so-called Small Sam-
ple Size (SSS) problem [18,25], i.e., the number of training samples is far smaller than
the dimensionality of the samples. Meanwhile, the face recognition task becomes more
difficult when the testing samples are subject to severe facial variations such as expres-
sion, illumination, occlusion, etc.

To deal with the SSS problem, we propose to represent each single (training, testing)
image as a subspace spanned by its synthesized images. The employed synthesized im-
ages are the shifted images of the original single face image and thus can be efficiently
obtained without additional computation and storage costs. To measure the distance be-
tween subspaces, we design a subspace distance metric that is applicable to subspaces
with unequal dimensions. Moreover, to improve the robustness to the aforementioned
facial variations, we divide a face image into regions, compute the contribution scores
of the training samples based on the extracted subspaces in each region, and finally ag-
gregate the scores of all the regions to yield the ultimate classification result. Since the
proposed approach generates a subspace for each image (or a partitioned region of an
image), it is named as SIS (Single Image Subspace).

Experiments on several well-known databases show that the proposed SIS approach
achieves better classification performance than some renowned methods in the scenar-
ios of both one training sample per person and multiple training samples per person

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 205–219, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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with significant facial variations. In what follows, we will briefly review the related
work in Section 2, propose the SIS approach in Section 3, report on experimental re-
sults in Section 4, and conclude this paper with some discussion in Section 5.

2 Related Work

In dealing with the SSS problem, the following two paradigms are often employed: 1)
performing dimensionality reduction to lower the sample dimensionality, and 2) syn-
thesizing virtual samples to enlarge the training set.

Among the many existing dimensionality reduction methods, PCA (Principal Com-
ponent Analysis, Eigenfaces) [20] and LDA (Linear Discriminant Analysis, Fisher-
faces) [1] are well-known and have become the de-facto baselines. Later advances on
PCA and LDA include Bayesian Intra/Extrapersonal Classifier (BIC) [13], Discrimi-
nant Common Vectors (DCV) [4,9], etc.

Our proposed SIS approach works along the second paradigm, i.e., synthesizing
virtual samples, whose effectiveness has been verified in quite a few studies
[3,11,16,19,23]. In [3], Beymer and Poggio synthesized virtual samples by incorpo-
rating prior knowledge, and yielded a classification accuracy of 82% with one real and
14 virtual images compared to 67% with only real samples on a database of 62 per-
sons. Niyogi et al. [14] showed that incorporating prior knowledge is mathematically
equivalent to introducing a regularizer in function learning, thus implicitly improving
the generalization of the recognition system. In [23], Wu and Zhou enriched the infor-
mation of a face image by combining the face image with its projection map, and then
applied PCA to the enriched images for face recognition. They reported 3-5% higher
accuracy than PCA through using 10-15% fewer eigenfaces. Martinez [11] proposed
the Local Probabilistic Subspace (LPS) method. Specifically, Martinez synthesized vir-
tual samples by perturbation and divided a face image into several regions where the
eigenspace technique was applied to the generated virtual samples for classification.
Good performance of LPS was reported on the AR [12] face database. In [16], Shan et
al. proposed the Face-Specific Subspace (FSS) method. They synthesized virtual sam-
ples by geometric and gray-level transformation, built a subspace for every subject, and
classified the testing sample by minimizing the distance from the face-specific subspace.
The effectiveness of FSS was verified on face databases such as YALE B [6]. Torre et
al. [19] generated virtual samples by using 150 linear and non-linear filters, and built an
Oriented Component Analysis (OCA) classifier on each representation. By combining
the results of the 150 OCA classifiers, they achieved good performance on the FRGC
v1.0 dataset.

The synthesized samples are usually exploited for generating a subspace. There are
roughly three styles for generating the subspace: 1) generating a subspace from the
whole enlarged training set, e.g., [3,11,23], 2) generating a subspace from all the syn-
thesized images of the same subject, and 3) generating a subspace from all the images
passing through the same filter, e.g., [19]. In contrast to these past studies, we gener-
ate a subspace from each single (training, testing) image by exploiting its synthesized
(shifted) images. To the best of our knowledge, such a style has not been reported in
literature.
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In addition to the SSS problem, severe facial variations such as expression, illumina-
tion and occlusion can often make the face recognition task especially hard
[18,25].

To deal with illumination variation, Georghiades et al. [6] proposed an illumination
cone method. They exploited the fact that the set of images of a subject in fixed pose but
under all possible illumination conditions is a convex cone in the space of images, and
assigned to a testing image the identity of the closest approximated illumination cone.
This method achieved perfect performance on the Yale Face Database B. Lee et al. [10]
dwelled on how to arrange physical lighting so that the acquired images of each sub-
ject can be directly used as the basis vectors of a low-dimensional linear space. They
proposed the Nine Points of Light (9PL) method with two versions: 9PL with simu-
lated images (9PLsim) and 9PL with real images (9PLreal), and verified their effective-
ness on face databases such as Extended YALE. Like the illumination cone and 9PL
methods, our SIS approach also employs linear subspace representation. Yet in con-
trast to illumination cone and 9PL which generate a subspace from all the training im-
ages of a subject, our SIS approach builds a subspace for each single (training, testing)
image.

To deal with variations of expression and occlusion, Martinetz [11] proposed to di-
vide a face image into several regions, and the LPS method yielded good performance
on the AR face database. Tan et al. [17] partitioned a face image into several regions, and
trained a Self-Organizing Map (SOM) on each region for feature extraction. The SOM-
face method has been proven effective on databases such as AR. Moreover, in [18], it has
been indicated that face recognition is less sensitive to facial variations such as expres-
sion and occlusion when a face image is divided into several regions that are analyzed
separately. Inspired by these works, we also divide a face image into several regions in
the proposed SIS approach to improve the robustness to the severe facial variations.

3 The SIS Approach

3.1 Generating Synthesized Samples

Given a face image matrix A of size M × N , we generate the following m × n number
of synthesized (shifted) images with size of l × r:

Aij = A(i : (l + i − 1), j : (r + j − 1)),
1 ≤ i ≤ m, 1 ≤ j ≤ n,

(1)

where m and n are parameters, l = M − m + 1 and r = N − n + 1.
It is obvious that the shifted images can be obtained without additional computation

and storage costs, since they are the shifted parts of the original single image. When
m = n = 1, there is only one shifted image, i.e., the original face image; when m and n
are relatively small, say m = n = 3, there are nine shifted images (illustrated in Fig. 1)
that resemble the original face image visually; and when m and n are very large, say
m = M and n = N , there are M × N number of synthesized images that contain
little visual information, since they reduce to points. Therefore, the values of m and n
trade off the number of the synthesized images and the information delivered. We have
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Fig. 1. Illustration of a face image A and its nine synthesized (shifted) images Aij’s with m =
n = 3

observed in experiments (in Section 4.5) that 3 ≤ m, n ≤ 6 are good choices for the
proposed SIS approach.

In fact, the shifted images act as the basis images in the linear spatial filtering [8] of
A in the way that:

Ã =
m∑

i=1

n∑

j=1

wijAij , (2)

where wij ’s are the coefficients of a filter mask with size m × n, and Ã is the corre-
sponding filtered image.

3.2 Building the Subspace

By using the synthesized images of the single image A, we build a subspace:

SA = span(A11, A12, . . . , Amn), (3)

or equivalently
Sa = span(a11, a12, . . . , amn), (4)

where aij = vec(Aij) is obtained by sequentially concatenating the column vectors of
matrix Aij , and a = vec(A). Then, a set of orthonormal basis vectors can be computed
for Sa by techniques such as Gram-Schmidt orthogonalization [7] and Singular Value
Decomposition [7].

From the viewpoint of linear spatial filtering [8], the subspace SA in fact contains
infinite number of linearly filtered images of A under all possible combinations of mask
coefficients wij ’s. Some images contained in SA are illustrated in Fig. 2, from which
we can observe that: 1) some images are able to reveal fine facial details such as eyes,
e.g., those in the third and fourth columns; and 2) some images are less sensitive to
illumination variation, e.g., those in second and third rows. Therefore, it is expected
that the subspace SA (or equivalently Sa) can be more helpful than the original single
image A for face recognition.

3.3 Measuring Subspace Distance

To measure the distance between subspaces, we propose the following subspace dis-
tance metric based on orthogonal projection [7]:

dist(S1, S2) =||PPT − QQT ||F

=
√

k1 + k2 − 2||PT Q||2F

=

√√√√k1 + k2 − 2
k∑

i=1

cos(θi)2

, (5)
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Fig. 2. Illustration of some images contained in the subspace SA. The employed spatial filters (of
size 3 × 3) are depicted in the first row, with the images filtered by them being shown below.

where ||.||F denotes the Frobenius norm, T is the matrix transpose operator, S1 and S2
are respectively k1- and k2- dimensional subspaces of R

d×1, P ∈ R
d×k1 (Q ∈ R

d×k2)
contains a set of orthonormal basis vectors for S1 (S2), k = min(k1, k2), and θi’s (i =
1, 2, . . . , k) are the principal angles [7] between S1 and S2 in a non-decreasing order.

It is easy to prove that the subspace distance (5) is a metric by checking the three
well-known metric properties.

Previously there are some studies on measuring the dissimilarity (or similarity) of
subspaces. Golub and Van Loan [7] proposed a distance metric distG(S1, S2) =
||PPT − QQT ||2 = cos(θk) for subspaces with equal dimensions (i.e., k = k1 = k2).
Moreover, they only employed the biggest principal angle in measuring the distance. In
contrast to distG(S1, S2), our subspace distance metric employs the information of all
the principal angles. Yamaguchi et al. [24] proposed to measure the similarity between
video sequences by the smallest principal angle between subspaces. In contrast to their
work which only employs the smallest principal angle, our distance metric utilizes the
information of all the principal angles. Wolf and Shashua [22] proposed to measure the
similarity between subspaces with equal dimensions by

∏k
i=1 cos(θi)2, and they proved

that this similarity makes a positive definite kernel when it is generalized to nonlinear
subspaces by the kernel trick. In contrast to their similarity defined on subspaces with
equal dimensions, our distance metric can deal with subspaces with unequal dimen-
sions. Moreover, in Wolf and Shashua’s method, due to the employed multiplication
operator,

∏k
i=1 cos(θi)2 will be dominated by some small cos(θi)’s, i.e., even if two

subspaces share k − 1 orthonormal bases,
∏k

i=1 cos(θi)2 will still be zero so long as
the other basis vectors are orthogonal. It is obvious that our distance metric does not
suffer from this problem. Needless to say, (5) can generate a positive definite kernel
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in the form of k(S1, S2) = exp(−ρdist(S1, S2)) (ρ > 0), since Chapelle et al. [5]
pointed out that k(x, y) = exp(−ρd(x, y)) (ρ > 0) is a positive definite kernel so long
as d(x, y) is a metric.

3.4 Accomplishing Face Recognition

By incorporating 1) the subspace representation of a single image, 2) the subspace
distance metric, and 3) the technique of dividing a face image into several regions to
deal with facial variations [11,17,18], the SIS approach works as follows:

1) Divide a face image into c overlapping regions of size R×C, with the constraints
that a) R and C are set about 1/3 of M and N , and b) the adjacent regions share half
of the image pixels so that some discriminative organs such as eyes are more likely to
reside in certain partitioned regions;

2) Build a subspace for the i-th (i = 1, 2 . . . , c) partitioned region by employing
(1) and (4). Moreover, based on the subspace representation, (5) will then be used to
calculate distij , the distance between a testing sample and the j-th training sample, and
a contribution score is obtained as:

scorei
j =

mins
j=1 distij
distij

, (6)

where s is the number of training samples;
3) Assign to a testing sample the identity of the j∗-th training sample that has the

maximal aggregated score as:

j∗ = argmax
j

c∑

i=1

scorei
j , j = 1, 2, . . . , s. (7)

The time complexity of the SIS approach in classifying an unknown sample is
O(csRCm2n2).

4 Experiments

To evaluate the proposed SIS approach, we conduct extensive experiments on three well-
known face databases: AR [12], Extended YALE (EYALE) [6,10] and FERET [15].

4.1 Database Description

AR is a very challenging database that consists of over 3,200 frontal images of 126 sub-
jects (70 men, 56 women). Each subject has 26 different images grabbed in two different
sessions separated by two weeks, and in each session 13 images under severe variations
in expression, illumination and occlusion were recorded. The 26 images of one sub-
ject are illustrated in Fig. 3, with the corresponding variations described in Table 1.
In this paper, we use a subset provided and preprocessed by Martinez [12]. This subset
contains 2,600 face images corresponding to 100 subjects (50 men, 50 women) where
each subject has 26 different images under the aforesaid variations. The original reso-
lution of these image faces is 165 × 120 and we resize them to 66 × 48.
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Fig. 3. Illustration of 26 images of one subject from AR

Table 1. Variations of one subject’s 26 images on AR

Session 1 Session 2
Index Variation(s) Index Variation(s)

(a) neutral (n) time
(b-d) expression (o-q) expression & time
(e-g) light (r-t) light & time
(h) glasses (u) glasses & time
(i-j) glasses & light (v-w) glasses & light & time
(k) scarves (x) scarves & time

(l-m) scarves & light (y-z) scarves & light & time

The Extended YALE (EYALE) face database contains 2,432 frontal face images of
38 subjects under 64 different illumination conditions. The images of each subject are
partitioned to five subsets according to the illumination conditions illustrated in Fig. 4.
Lee et al. [10] manually cropped the images to 192×168, and we resize them to 60×50.

The FERET database consists of a total of 14,051 gray-scale images representing
1,199 subjects, with images containing variations in illumination, expression, pose and
so on. In this paper, only frontal faces are considered. These facial images can be divide
into five sets: fa (1,196 images), fb (1,195 images), fc (194 images), dup I (722 images)
and dup II (234 images). With the eye locations provided by the FERET program, we
crop the image size to 60 × 60.

4.2 Experimental Settings

The four parameters of SIS are set as follows: m and n are both set to 5, and R and C
are set as in Table 2. Moreover, we will evaluate the influence of the four parameters in
Section 4.5.
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Fig. 4. The azimuth and elevation of the 64 strobes. Each annulus contains the positions of the
strobes corresponding to the images of each illumination subset-Subset 1 (12o), Subset 2 (25o),
Subset 3 (50o), Subset 4 (77o) Subset 5 (outer annulus) [6].

Table 2. Image size M × N and region size R × C on each database

AR EYALE FERET
M × N 66 × 48 60 × 50 60 × 60
R × C 16 × 18 20 × 20 20 × 20

A degenerated variant of the proposed SIS approach is to directly represent each
single (training, testing) face image as a subspace spanned by its shifted images, and
to conduct the recognition by selecting the subspace which corresponds to a training
sample and is with the minimal distance to the subspace corresponding to the testing
sample. In this variant, a face image is not divided into several regions (or in other
words, c, the number of partitioned regions, equals 1), and thus it is termed as SISnondiv.
In order to study that whether the process of dividing the face image into several regions
helps to improve the robustness of SIS, and whether SIS could work well without this
process, we have also evaluated this variant in the experiments.

Moreover, we compare the proposed SIS approach with the following eleven face
recognition methods: PCA [20], LDA [1], DCV [4,9], BIC [13], Elastic Bunch Graph
Matching (EBGM) [21], LPS [11], SOM-face [17], illumination cone [6], 9PL [10] and
FSS [16]. The settings of these methods are as follows.

1) For PCA, it is a common practice to lower the dimensionality of the samples and
then to employ a nearest neighbor classifier with Euclidean distance for classification.
Since it is an open problem to select the the optimal number of employed eigenfaces,
we exhaustively try all numbers of eigenfaces to report the their best performance.

2) For LDA and DCV, the samples are firstly projected to a subspace whose di-
mension is the number of classes minus 1, and then a nearest neighbor classifier using
Euclidean distance is employed for classification.
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Table 3. Recognition accuracies (%) on AR in the scenario of one training sample per person (the
best performance in each case has been bolded)

Index Image(s) SIS SISnondiv PCA LPS [11] SOM-face [17]

(b-d) 99 85 88 83 95

(h) 99 87 58 80 97

(k) 98 89 13 82 95

(o-q) 86 69 64 76 81

(u) 96 61 29 54 60

(x) 90 78 9 48 53

(e-g) 100 99 64 N/A N/A

(i-j) 96 60 23 N/A N/A

(l-m) 97 77 9 N/A N/A

(n) 100 95 83 N/A N/A

(r-t) 99 89 34 N/A N/A

(v-w) 82 36 14 N/A N/A

(y-z) 84 63 4 N/A N/A

3) For BIC, EBGM, LPS, SOM-face, illumination cone, 9PL and FSS, the results are
directly cited from the literatures [2,6,10,11,16,17].

4.3 One Training Sample Per Person

In this subsection, we consider face recognition in the scenario of one training sample
per person, and conduct the following experiments.

Experiment 1: We employ the first image of each subject from the AR database
(i.e., Fig. 3 (a)) for training and the remaining images for testing. Moreover, to evaluate
the performance under different facial variations, we categorize the 25 testing samples
of each subject into 11 subsets according to the facial variations summarized in Table 1,
and report the classification performance in Table 3. From this table, we can observe
that: 1) SISnondiv generally obtains higher classification performance than the holistic
methods such as PCA (note that, the comparison with PCA is not fair for SISnondiv,
since the recognition accuracies of PCA reported here are the optimal ones by trying
all the numbers of projection vectors, and Martinetz [11] reported a recognition rate of
less than 70% for (b-d) by using 20 eigenfaces); 2) since holistic methods are sensi-
tive to severe facial variations such as expression, illumination and occlusion [18], it
is reasonable that SISnondiv achieves inferior classification performance to SIS; 3) SIS
obviously outperforms PCA; and 4) compared to the recent methods such as LPS and
SOM-face that are primarily designed for face recognition with one training sample per
person under severe variations, SIS yields better classification performance especially
for the testing samples with indexes (u) and (x) that are of severe variations in occlusion
and time duration.

Experiment 2: We conduct experiments on FERET by using the fa set for training
and the remaining sets for testing. Results are presented in Table 4, from which we can
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Table 4. Recognition accuracies (%) on FERET (the best performance in each case has been
bolded)

Method fb fc dup I dup II
SIS 91 90 68 68

PCA, MahCosine [2] 85 65 44 22
Bayesian, MAP [2] 82 37 52 32
EBGM Standard [2] 88 40 44 22
PCA Euclidean [2] 74 5 34 14
LDA Euclidean [2] 61 19 38 14

find that SIS obviously outperforms the state-of-the-art methods evaluated in the CSU
Face Identification Evaluation System [2] especially for the sets such as fc, du I and du
II that contain significant facial variations.

Experiment 3: We further compare the performance under serious illumination vari-
ation on the EYALE face database. The first image of each subject (i.e., the image in the
center of Fig. 4 with azimuth and elevation degrees of zero) is employed for training
while the remaining images are used for testing. The classification rates are reported
in Table 5, from which we can observe that SIS achieves higher recognition rates than
PCA especially on Subsets 3, 4 and 5.

The above experiments verify that the proposed SIS approach is a good choice in the
scenario of one training sample per person.

4.4 Multiple Training Samples Per Person

In this subsection, we consider face recognition in the scenario of multiple training
samples per person and conduct the following experiments.

Experiment 4: We employ the seven non-occluded face images of each subject from
the first session of the AR database (i.e., Fig. 3 (a-g)) for training and the remaining
images for testing, and present the experimental results in Table 6. From this table, we
can find that the proposed SIS approach achieves much higher classification accuracies
than the other methods, especially when the testing images are with severe occlusions
such as glasses and scarves (Table 6 (h-m, u-z)). Furthermore, comparing the results
reported in Tables 3 and 6, we can find that SIS with only one training sample per
person can even outperform methods such as LDA, DCV and PCA with seven training
samples per person.

Experiment 5: We employ Subset 1 of the EYALE database for training and the
remaining subsets for testing, and report the results in Table 7. From this table, we can
find that: 1) SIS can obtain competitive performance to the state-of-the-art methods such
as illumination cone(including Cones-attached [6], Cones-cast [6]) and 9PL (including
9PLreal [10] and 9PLsim [10]) that are primarily designed for dealing with severe il-
lumination variation; and 2) SIS outperforms methods such as PCA, LDA, DCV and
FSS especially on Subsets 4 and 5 that have severe illumination variation. Furthermore,
comparing the results of Tables 5 and 7, we can find that SIS using only one training
sample per person can even outperform methods such as LDA, DCV, PCA and FSS
employing seven training samples per person.
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Table 5. Recognition accuracies (%) on EYALE in the scenario of one training sample per person
(the best performance in each case has been bolded)

Method
Subset

1 2 3 4 5
SIS 100 100 99 95 96

PCA 95 91 21 4 3

Table 6. Recognition accuracies (%) on AR in the scenario of multiple training samples per
person (the best performance in each case has been bolded)

Index Images SIS LDA DCV PCA

(h) 99 65 73 58

(i-j) 100 51 60 56

(k) 100 57 47 14

(l-m) 99 50 47 10

(n) 100 91 88 84

(o-q) 99 82 82 78

(r-t) 99 86 84 77

(u) 97 37 45 27

(v-w) 97 22 33 27

(x) 92 25 24 6

(y-z) 95 24 18 5

Table 7. Recognition accuracies (%) on EYALE in the scenario of multiple training samples per
person (results in the rows marked by ∗ are obtained by evaluating only the first 10 subjects, while
results in the other rows are obtained by evaluating all the 38 subjects)

Method
Subset

2 3 4 5
SIS 100 100 97 99
SIS∗ 100 100 99 100

Cones-cast [6]∗ 100 100 100 N/A
9PLreal [10]∗ 100 100 100 N/A
9PLsim [10]∗ 100 100 97 N/A

Cones-attached [6]∗ 100 100 91 N/A
FSS [16]∗ 100 100 87 35

LDA 100 98 37 5
DCV 100 96 32 6
PCA 90 41 6 3

The above experiments verify that the proposed SIS approach is effective in the sce-
nario of multiple training samples per person.
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Fig. 5. Influence of the parameters of SIS

4.5 Influence of the Parameters

To study the influence of the four parameters m, n, R and C on the performance of SIS,
we conduct experiments on the AR database by employing the images with index (a)
for training and the images with index (u) for testing.

Experiment 6: We fix R = 16 and C = 18 and report recognition accuracies by
varying values of m × n in Fig. 5 (a). First, when m = n = 1, for a given sub-
image, we can only generate one synthesized sub-image that is just the original sub-
image. In this case, SIS reduces to applying the correlation method to sub-images for
classification, and only achieves a classification accuracy of 63%, which is far less
than 96% by using 25 shifted sub-images. Second, when m, n > 6, there is a tendency
towards performance drop, which may owe to the fact that little information is delivered
by the synthesized sub-images with relatively big m and n, as mentioned in Section 3.1.
Third, the performance curve is quite stable when the value of m × n is between 3 × 3
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and 6 × 6. Note that, the recognition task here is very hard due to severe occlusion by
wearing glasses, and thus it is nice to see that SIS is relatively invariant to m × n in a
relatively wide range.

Experiment 7: We fix m = 5 and n = 5 and report recognition rates by varying
values of R × C in Fig. 5 (b), from which we can observe that the performance curve
is relatively stable when R and C are around 1/3 of M and N .

5 Conclusion and Discussion

In this paper, we propose the SIS (Single Image Subspace) approach for face recog-
nition. First, we propose to represent each single image as a subspace spanned by its
the synthesized images. Second, we design a new subspace distance metric for mea-
suring the distance between subspaces. Third, to improve the robustness to great facial
variations such as expression, illumination and occlusion, we divide a face image into
several regions, compute the contribution scores of the training samples based on the
extracted subspaces in each region, and aggregate the scores of all the regions to yield
the ultimate recognition result.

Experiments on AR, FERET and EYALE show that SIS outperforms some renowned
methods such as PCA, LDA, DCV, LPS, SOM-face, BIC, EBGM and FSS in the sce-
narios of both one training sample per person and multiple training samples per person
with significant facial variations. Moreover, like the well-known methods such as illu-
mination cone and 9PL, SIS yields classification accuracies close to 100% on EYALE.

In our future work we will study the theoretical justification for the proposed SIS ap-
proach. We will try to make use of kernel trick to embed the idea of SIS into traditional
methods such as LDA. Moreover, we will try to exploit other synthesizing techniques
in building the subspace.
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Abstract. Integral projections reduce the size of input data by trans-
forming 2D images into significantly simpler 1D signals, while retaining
useful information to solve important computer vision problems like ob-
ject detection, location, and tracking. However, previous attempts typ-
ically rely on simple heuristic analysis such as searching for minima or
maxima in the resulting projections. We introduce a more rigorous and
formal modeling framework based on a small set of integral projections
–thus, we will call them 1.5D models– and show that this model-based
analysis overcomes many of the difficulties and limitations of alternative
projection methods. The proposed approach proves to be particularly ad-
equate for the specific domain of human face processing. The problems
of face detection, facial feature location, and tracking in video sequences
are studied under the unifying proposed framework.

Keywords: 1.5D object models, integral projections, face detection, fa-
cial feature location, face tracking.

1 Introduction

Dimensionality reduction is a required stage in many computer vision applica-
tions. This task is usually carried out with techniques like principal components
analysis (PCA) [1], linear discriminant analysis (LDA), independent component
analysis (ICA), or other feature extraction methods, such as edge or segment
detection. Integral projections are among the most frequently used methods to
reduce the huge volume of data contained in images, specially in the human
face domain [2]. However, projections are often used just in heuristic and ad hoc
algorithms [2,3,4,5]. A much more theoretically sound basis can be developed to
take full advantage of the intrinsic power of the technique. Two aspects will be
crucial to define this framework: first, a simple but powerful modeling frame-
work for projections, which is generic and trainable; and second, an efficient and
robust technique for the alignment of resulting 1D signals.

The rest of the paper is structured as follows. Section 2 describes the concept
and properties of integral projections, and tackles the problems of modeling and
alignment. A feasible face model using projections is presented in section 3. Then,
the problems of human face detection, facial feature location, and face tracking
in video are studied in sections 4, 5 and 6, always working with projections.

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 220–234, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Experiments and references to related work are included in each section. Finally,
the main contributions of the paper are summarized in section 7.

2 Integral Projections and 1.5D Models

Radon transform [6], Hough transform [7], and integral projections are closely
related concepts. Let f(x, y) be a continuous 2D function; its Radon transform
is another 2D function, R[f ](θ, s), defined as:

R[f ](θ, s) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − s) dx dy (1)

where δ is a Dirac’s delta. Curiously enough, 58 years after being firstly formu-
lated by Johann Radon in 1914, equation 1 was renamed as “Hough transform
to detect lines” [7], in this case applied on discrete images.

Moreover, integral projections are a specific case of equation 1, where θ is a
fixed projection angle. For example, let i(x, y) be an image; R[i](0, y), ∀y is called
the vertical integral projection of i, and R[i](π/2, x), ∀x the horizontal
projection1. For simplicity, we will denote them with PVi(y) and PHi(x).

In a pioneering work by Kanade in the human face domain [2], integral pro-
jections were applied on edge images. More recently, some alternative methods
have been proposed, such as the variance projection functions [5], where the
variance of each row or column of pixels –instead of just the sum– is computed.
Though these also have some interesting advantages, by definition they are not
linear transforms; thus, many of the following properties do not hold.

2.1 Properties and Advantages

Compared to most other dimensionality reduction techniques –specially linear
subspace methods, like PCA, LDA and ICA–, integral projections are simpler
both in definition and computation. Nevertheless, they offer a very interesting set
of properties, which make them preferable in many image analysis applications:

– Invariance and noise filtering. Projections are invariant to a number of
image transformations such as mirroring, scale, shear and translation along
the projection angle. It is also well-known that integral projections are highly
robust to white noise [8]. Figure 1 shows a sample facial image under several
instances of these transformations, and the corresponding vertical projec-
tions; it can be easily seen that, while the former are severely distorted, the
latter remain greatly unaffected.

– Locality. Integral projections preserve the principle of locality of pixels: two
neighbor points in a projection correspond to two neighbor regions in the
image. This makes it possible to apply alignment processes after projection,
whereas in PCA, LDA and ICA, images have to be aligned before projection.

1 Some authors call “vertical projection” what we define as “horizontal projection”
and vice versa, while many others adopt our same definition.
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Fig. 1. Invariance of integral projections to various image transforms. a) Original im-
age. b-f) The same image after: b) shear; c) mirroring and translation; d) random noise;
e) partial occlusion; f) smoothing. g) The corresponding vertical projections.

In other words, integral projections are less sensitive to miss-alignment in
the projected regions.

– Invertibility. No information is lost in the process of projection. Using an
adequate number of projections at different angles, it is possible to recon-
struct original images up to a desired precision level. This result derives from
the central slice theorem [6], which is the base of computed tomography.

– Characterization. According to the previous property, integral projections
are preferred when the number of projections needed to represent an object
is small. Due to symmetry, this is precisely the case for human faces. Fur-
thermore, projections from very different people share a common underlying
structure, as can be seen in figure 2, where images of more than 1000 distinct
individuals are projected.

– Efficiency. Finally, working with projections is obviously much faster than
with full images. Moreover, integral images [10] can be used to reduce even
more the cost of computing projections, as described below.

2.2 Gaussian Projection Models

Many computer vision systems have benefited from the good properties of integral
projections [2,3,4,7]. But, in general, most of them merely analyze the projections
heuristically, by searching for local maxima, minima, areas of high variation (max-
ima of the derivative), or any other similar ad hoc techniques. For example, a face
is said to be present if the vertical projection presents a minimum in the eyes, a
maximum in the nose, and another minimum in the mouth [4]. Considering the
highly regular structure of human faces –see figure 2c)– it is clear that a lot of
information is being thrown away by these simple heuristic methods.
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Fig. 2. Characterization of objects with projections. a) Mean male face. b) Vertical
integral projection of the mean face (observe the –non-casual– similitude to a profile
face). c) 3818 vertical projections of 1196 individuals from the FERET database [9]
(each projection is represented as a single column).

To avoid this undesirable loss of information, we propose a mechanism which
takes advantage of the whole structure of the projection signal. In particular,
let P = {P1, P2, . . . , Pn} be a set of training projections from a certain class of
objects. We define a projection model as a pair of 1D signals (M, V ), where:

– M(i) is the mean of the set {P1(i), P2(i), . . . , Pn(i)}.
– V (i) is the variance of the set {P1(i), P2(i), . . . , Pn(i)}.

This way, a set P of integral projections is modeled as m independent 1D
gaussians, being m the domain of P –that is, the size of each input projection
vector–. Figure 4a) shows an example of one of these models, corresponding to
the vertical projections of a set of images of human faces.

2.3 Projection Alignment

Alignment (both in domain and codomain) between two different 1D signals is
a key problem when working with integral projections. Let us define a family
of alignment transformations on 1D signals, tabcde. For any projection P , each
transformed value is given by:

tabcde(P )(i) := a + b · i + c · P (d + e · i)
∀i ∈ {(Pmin − d)/e, . . . , (Pmax − d)/e} (2)

This is an affine transformation of 1D signals in the XY plane. A visual
interpretation of the free parameters (a, b, c, d, e) is shown in figure 3.

Alignment of an input projection P to a given projection model (M, V ) can
be formulated as the optimization of the following expression:

{a∗, b∗, c∗, d∗, e∗} = arg min
a,b,c,d,e

1
||r||

∑

i∈r

(M(i) − tabcde(P )(i))2

V (i)
(3)
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Fig. 3. Interpretation of parameters (a, b, c, d, e) in the alignment function defined in
equation 2. a) Scale in signal’s value (c) and domain (e). b) Translation in value (a)
and domain (d). c) Shear (b), that accounts for non-uniform illumination.

where r is the intersection of domains of M and tabcde(P ). For fixed {d, e}, the
minimum squared error solution for the parameters {a, b, c} can be obtained in
closed form. Then, we can define the following function mindist:

mindist(d, e) := min
a,b,c

dist((M, V ), tabcde(P )) (4)

where dist is the summation term in equation 3. Unfortunately, {d, e} cannot
be solved analytically. But, by definition, the range of possible values for both
parameters is bounded by a maximum and minimum translation, d, and scale, e.
Thus, we propose a simplified version of the Nelder-Mead simplex optimization
algorithm [11] based on successive sampling and reduction of the search space
in the plane mindist(d, e). The algorithm is described in figure 4.
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Fig. 4. Illustration of the alignment algorithm. a) Model and signal before alignment.
b) Alignment distance, mindist, as a function of e and d; and the search space in the
first iterations of the algorithm. c) Resulting signal and model after alignment.



Human Face Processing with 1.5D Models 225

3 A 1.5D Face Model

In the rest of this paper we will describe the application of gaussian projection
models and the proposed alignment algorithm in the specific domain of face
processing. As mentioned before, integral projections are specially adequate for
representing human faces, because a very small number of projections is able to
retain most information of typical faces. For example, in terms of variance of the
gray value of a mean face –see figure 2a)–, the vertical projection alone describes
more than 75% of the variance of the original image.

In the following, we will assume that input faces are normalized according to
these three rules:

1. Faces are extracted with a predefined resolution of W × H pixels –typically
24 × 30– using a similarity transform, i.e. a scale/translation/rotation.

2. Faces are horizontally centered, with both eyes at the same height.
3. We set the height of the eyes heyes = 0.2H , and the height of the mouth

hmouth = 0.8H .

Our face model consists of two integral projection models –thus, we call it
1.5D model–, which are computed on normalized faces. These models are:

– (MVface, V Vface): model of the vertical integral projections of the extracted
facial images, PVface.

– (MHeyes, V Heyes): model of the horizontal projections of the eyes’ region,
PHeyes, approximately between height 0.1H and 0.3H in extracted images.

Figure 5 shows a sample model computed on 374 faces. Observe the typical
patterns of both models, corresponding to dark and light areas of human faces.
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Fig. 5. Face model trained with a set of 374 faces not included in the tests. a) Mean face
and parameters of the normalized model: H= height of the extracted faces; W= width;
heyes= height of the eyes; and hmouth= height of the mouth. b) Gaussian projection
model of the vertical integral projection of the face, MVface. c) Gaussian projection
model of the horizontal projection of the eyes, MHeyes.
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4 Human Face Detection

Most face detectors –such as the popular method by Viola and Jones [10]– are
based on multi-scale exhaustive search. Sung and Poggio were the first to develop
this idea [12]. In essence, a binary (face/non-face) classifier is applied over all
possible locations (or windows), and at all possible resolutions. These methods
are known as appearance-based detectors.

4.1 Face Detection Using 1.5D Models

Our face detection technique follows the appearance-based approach, where the
binary classifier is designed to work with integral projections and 1.5D models.
The structure of the proposed detector is depicted in figure 6.

Input image

MVface

projections
by strips

Step 2.Horizontal
projection of

the candidates  .

MHeyes

Step 3.
Grouping

of the candidates

Final result

Step 1.Vertical

Fig. 6. Global structure of the face detection algorithm. In step 1, a pyramid of scaled
vertical integral projections of the input image is computed, and the model MVface is
searched for at every position and scale. The resulting candidates are verified, in step 2,
using horizontal projections and the corresponding model MHeyes. Finally, tentative
candidates are grouped in step 3 to eliminate multiple responses at the same location
of the image.

The procedure can be summarized in the following 3 steps:

Step 1. First, the algorithm constructs a pyramid of vertical projections from
the input image, using a typical scale factor reduction of 1.2. In accordance
with the model, the width of the strips is W pixels, and these are computed
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in steps of W/4 pixels (thus, adjacent strips represent in fact partially over-
lapped regions). Then, the model of PVface is searched for along the pyramid
of projections.

This first step accounts for the uncertainty in the size of the faces, and
represents the most expensive part of the process. However, using integral
images [10], computing the whole pyramid of projections requires just O(n)
operations, where n is the number of pixels in the input image.

Step 2. The most relevant candidates obtained in step 1 are verified using
PHeyes. For each candidate, if the horizontal projection of the subregion
approximately corresponding to the eyes –with slight variations in scale and
horizontal position– does not fit with the model MHeyes, the candidate is
rejected; otherwise, it is accepted.

Step 3. Finally, the remaining candidates are analyzed in order to avoid multi-
ple responses. Nearby and overlapping candidates are grouped together, and
only the best candidate of each group is classified as a detected face.

4.2 Face Detection Results

Integral projections have already been applied to human face detection [3,4],
mostly in localization scenarios –i.e., supposing that just one face is present in
each image–. Figure 7 shows some sample results of the proposed detector on
the public CMU/MIT face database [13], demonstrating that our method is able
to detect an arbitrary number of faces in complex backgrounds.

Fig. 7. Sample results of the face detector based on integral projections. The images
were taken from the CMU/MIT face database [13]. More results available at [14].

We have also evaluated the performance of our detector –both in quantitative
and qualitative terms– on a face database developed by the authors’ research
group, which includes samples taken from TV, TDT, DVD, digital photographs,
video-conference cameras, and additional samples taken from the CMU/MIT set
–as shown in figure 7–. This database contains a total of 737 images with 853
faces. Our integral projection method (IntProj) was compared with two alter-
native –and publicly available– appearance-based techniques: Viola and Jones’
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Table 1. Face detection results on a database with 737 images containing 853 faces.
The percentage of correctly detected faces (detection rate) is shown for different false
positive (FP) settings. FP ratio is relative to the number of images. The computer used
was a Pentium IV at 2.6GHz, and the average image size is of 534 × 393 pixels.

Detection rate Time
Detection method FP=5% FP=10% FP=20% FP=50% (ms)

IntProj 35.6 50.8 67.2 84.2 85.2
AdaBoost&Haar [10] 86.1 88.9 90.8 91.8 292.5
Neural Networks [13] 55.0 75.4 85.5 88.6 2337.7

AdaB&Haar + IntProj 92.7 94.0 95.0 96.1 295.6

detector [10], based on the AdaBoost algorithm and Haar-like filters, and Row-
ley’s [13], based on neural networks. Additionally, a combination of our method
and [10] was also studied. We present a summary of the results of this experiment
in table 1, which shows the detection rates corresponding to several arbitrarily
chosen false positive rates of the resulting ROC curves for each method.

Though more complex techniques certainly produce better detection rates, the
proposed method exhibits a remarkable cost/benefit ratio. Moreover, IntProj
and NeuralNet achieve similar maximum detection rates, while the former is 27
times faster. Considering only the images taken from webcams, IntProj reaches
a 90% detection rate at 10% false positives per image.

But, clearly, the best performance is given by the combined method, which
improves around a 5% the average detection rate of AdaBoost&Haar, at a
negligible increment in the execution time.

5 Facial Feature Location

As shown in figure 7, our face detector simply outputs a rough location of the
existing faces. This is a common characteristic of many methods available in
the literature [15], where the faces are described with bounding rectangles. The
purpose of facial feature location is to refine that description, providing –in our
case– a precise location of the left and right eyes, and the mouth.

5.1 Face Feature Locator Using 1.5D Models

Basically, our facial feature locator performs a refined search of the 1.5D face
model (i.e., MVface and MHeyes) on the previously detected faces. The input
to this refinement process is the face rectangle generated by the detector. The
proposed method consists of three steps (figure 8), all of them relying on the
alignment algorithm described in section 2.3.

In the first step, we estimate face orientation, i.e. in-plane rotation2. This step
makes use of face symmetry in a robust way. The vertical integral projection of
2 The detector introduced in section 4 assumes that faces are approximately upright.

In our experiments, an inclination of up to ±10o is allowed, with insignificant degra-
dation in the detection rate.



Human Face Processing with 1.5D Models 229

Input image and
detected region

Step 1.
Orientation
estimation

Step 2.
Vertical

alignment

Step 3.
Horizontal
alignment

Final result

20 60 100 140

PVeyes(y)

15

10

5

0

y

20

15

10

5

0

20 60 100 140

50 150 250

30

20

10

0

50 150 250

PVface(y)

30

20

10

0

y

0 5 10 15 20 25 30
x

250

200

150

100

50

0

0 5 10 15 20 25 30
x

PHeyes(x)

MVface MHeyes

Fig. 8. Global structure of the facial feature location algorithm. In step 1, the orienta-
tion of the face is estimated using the vertical projections of both eyes. Then, in step
2, the vertical projection of the whole region is used to find the vertical position of the
face. Similarly, the horizontal projection of eyes is computed and aligned in step 3.

the expected left and right eye regions are obtained. Then, both projections are
aligned to each other, and the resulting displacement is easily transformed into
an estimated inclination angle. This simple method can be very accurate up to
angles of 20o.

The angle obtained in step 1 is used to rectify the input face. Then the accurate
vertical and horizontal scale and location of the extracted face are determined
in steps 2 and 3. The vertical integral projection of the face –along with an
extra margin– is computed in PVface, and this signal is aligned with respect to
MVface. Parameters {d, e}, resulting from the alignment algorithm (see equation
3) indicate the vertical translation and scale of the face, respectively.

In a similar way, in step 3 we compute the horizontal integral projection of
the eyes’ region PHeyes, which is aligned with respect to MHeyes to accurately
locate the face horizontally. In this case, parameters {d, e} indicate horizontal
position and scale. Finally, the coordinates of the eyes and the mouth in the
rectified image are mapped back into the original image.

5.2 Facial Feature Location Results

We present some sample results of the proposed method in figure 9. In all cases,
the output of the combined face detector described in section 4 is used to feed
the locator procedure based on integral projections, described in this section.

Though the proposed facial feature locator is based on face symmetry, it is
notably robust even in situations where this symmetry is not so evident, as can
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Fig. 9. Some sample results of the face locator based on integral projections. The four
images on the left were taken from the CMU/MIT face database [13], and the rest from
TV. More results available at [14].

be seen in figure 9. This is mainly due to two reasons: (1) changes in illumination
are practically removed by the alignment process; and (2) integral projections
remain invariant under small imprecisions in the projected regions –for example,
if a part of the background is projected–. Furthermore, our method is able to
work both with high and low resolution faces.

We have carried out extensive location experiments with more than 3700
manually labeled faces from the FERET database [9]. None of those faces were
used to train the 1.5D face model3. The proposed method was compared with
some alternative facial feature locators: a neural network-based eye locator by
Rowley [13]; a simple template matching method (using correlation and mean
eye and mouth patterns); and a modular eigenspace (eigen-eyes, eigen-mouth)
technique [1]. The main results are summarized in table 2.

Again, the proposed method achieves a very good cost/benefit ratio. It is able
to locate 99% of the faces with an error in the eyes position below 20% of the
distance between eyes, taking just 3 ms of computing time per face. Moreover, in
96% of these cases the error is under 10%. Its accuracy is very similar or better
than the neural networks locator, but it is about 100 times faster.

6 Face Tracking

Many different approaches have been proposed to deal with human face tracking,
based on color, appearance, optical flow, predefined models, eigen-decompositi-
ons, and many other heterogeneous techniques. Not surprisingly, Ahlberg and

3 In particular, the face model presented in figure 5 was used both in the detection
and location experiments.
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Table 2. Facial feature location results on 3743 faces from the FERET database [9]. For
each method: Location rate: percentage of faces with both eyes with an error below
20%; Angle diff.: mean error in inclination angle (in degrees); Dist. eyes, mouth:
mean distance error of eyes and mouth, respectively (error is always an Euclidean
distance, expressed as % of the eye-to-eye distance); Time: average location time per
face on a Pentium IV at 2.6GHz.

Location rate Angle Dist. Dist. Time
Location method (miss-locations) diff. eyes mouth (ms)

IntProj 98.9% (41) 0.9o 4.6% 9.8% 3.1
Neural Networks [13] 90.8% (343) 1.4o 4.5% 10.8% 346.0

Temp. Matching 91.1% (332) 2.0o 7.4% 10.5% 18.9
Eigen Features [1] 93.9% (272) 2.3o 6.2% 11.6% 45.1

Dornaika [16] use the expression “plethora of trackers” when talking about this
topic. Here we prove that integral projections can also be applied successfully to
this problem, producing a fast, stable and robust tracking method.

6.1 Face Tracking with 1.5D Models

Tracking methods are commonly based on two main components: a prediction
mechanism, responsible for estimating tracking status in each new frame of a
video sequence; and a relocator, which actually processes the current frame and
computes the resulting position. If the observed motion is expected to be small,
the first component can just be obviated; otherwise a more sophisticated pre-
dictor is required. In the human face domain, color based methods –such as the
popular CamShift [17]– can be used to perform a suitable prediction. They are
able to efficiently produce a robust but imprecise estimation of fast movements,
that will be refined then by the relocator.

In this context, the problems of face relocation and facial feature location are
closely related. Thus, our tracking algorithm shares a common structure with the
technique described in section 5. However, there are two important differences:

1. The 1.5D face model –i.e., the projection models for PVface and PHeyes– is
computed from the sequence itself. Recall that, in the case of facial feature
location, a generic model was used.

2. The orientation estimation step is performed after vertical and horizontal
alignments, instead of before. While in facial feature location the observed
inclination can be relatively high, in tracking only a presumably slight vari-
ation of inclination needs to be considered.

Besides, an excessive alignment distance is used to detect the end of tracking. A
more detailed description of the proposed face tracker can be found in [18].

6.2 Face Tracking Results

The method presented above was designed to perform robust and precise 2D
face tracking under complex situations of facial expression, fast motion, low
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Fig. 10. Some sample results of the face tracker based on integral projections on videos
from the NRC-IIT facial video database [19]. For each frame, we show the location of
eyes and mouth (upper right), the bounding ellipse (upper left), and the computed
projections (below).

Table 3. Face tracking results on 12 videos from the NRC-IIT facial video database [19]
(00-1.avi, 00-2.avi, 01-1.avi, ..., 05-02.avi). The total number of faces (frame-by-frame)
is 3635. Tracked faces and false positives are also counted frame-by-frame. Tracking
is said to be correct if the obtained location is close enough to real eye positions (see
caption of table 2); recall that all methods, except CamShift, involve a relocation of
the eyes. The computer used was a Pentium IV at 2.6GHz.

Face Tracker Tracked faces False positives Time (ms)
Detector [10] 2032 (55.8%) 368 (9.8%) 42.9

IntProj Null 2893 (79.6%) 493 (12.5%) 8.9
IntProj Color 3050 (83.9%) 300 (7.3%) 10.8
LK Tracker [20] 2828 (78.2%) 706 (17.1%) 5.1
Temp. Match 2387 (66.3%) 947 (23.9%) 11.3
CamShift [17] 1905 (51.5%) 1763 (47.0%) 5.8

resolution, partial occlusion, and poor illumination. The NRC-IIT facial video
database [19], publicly available, is a good resource for experimentation under
these circumstances. Figure 10 shows some difficult cases from this database.

Using 12 videos from the NRC-IIT set, we have compared the described
tracker with three alternative approaches: a pyramidal implementation of Lucas
and Kanade’s method [20]; a template matching-based tracker; and the CamShift
algorithm [17]. In addition, the result of applying Viola and Jones’ face detec-
tor [10] to all frames is also reported. Table 3 summarizes the performance of
these methods. The proposed technique (IntProj) was applied both without
prediction (Null), and with a color based predictor (Color).

The low detection rate of Detector (below 56%) is a good indicator of the
intrinsic complexity of the test. IntProj Color finds 50% more faces, while being
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4 times faster. The high rate of false positives in LK Tracker is due to the well
known drift problem of motion based trackers [16]. Our method attenuates its
effects by using a robust model for the face. In CamShift, false positives are
due to very imprecise locations of the face. In contrast, our tracker is able to
provide an accurate location of eyes and mouth even in cases of low resolution.

We have carried out additional experiments using sample videos captured
from TV, TDT, video-conference cameras and some DVD scenes. Several samples
present great changes in out-of-plane rotation. In general, the range of allowed
rotation is approximately ±40o in yaw, and ±20o in pitch. Many of these videos,
and the obtained results, can be found at [14]. Basically, all the conclusions
mentioned above still hold.

7 Discussion and Conclusions

In this paper we have tackled some of the main problems in face processing
under a common framework based on integral projection models and alignment.
Whilst projections are a classical and well-known technique in image analysis,
little effort has been done to formalize their use. We have discussed the necessity
to undertake this effort, by introducing the concept of a probabilistic projec-
tion model and a robust and general alignment process. Both aspects have been
thoroughly studied, leading to a gaussian technique to model projections, and
a fast iterative model-instance alignment algorithm. Using them in conjunction,
we have proposed closely related solutions for several face processing problems,
such as face detection on still images, facial feature location, and face tracking.

Our experiments prove that integral projections have a number of advantages
with respect to other techniques: improved generalization, immunity to noise,
and robustness against facial expressions and individual factors. The accuracy
of the proposed algorithm is similar to that of the more complex state-of-the-art
methods, with a considerable reduction of the computational cost.

Further applications of the proposed approach include the problems of per-
son recognition, 3D pose estimation, and facial expression recognition [14]. Our
future plans include using integral projections within the AdaBoost algorithm
[10]. Instead of using Haar-like features, AdaBoost would take projections as the
weak classifiers, giving rise to not-so-weak elementary classifiers.
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Abstract. Extending recognition to uncontrolled situations is a key challenge
for practical face recognition systems. Finding efficient and discriminative facial
appearance descriptors is crucial for this. Most existing approaches use features
of just one type. Here we argue that robust recognition requires several different
kinds of appearance information to be taken into account, suggesting the use of
heterogeneous feature sets. We show that combining two of the most successful
local face representations, Gabor wavelets and Local Binary Patterns (LBP), gives
considerably better performance than either alone: they are complimentary in the
sense that LBP captures small appearance details while Gabor features encode fa-
cial shape over a broader range of scales. Both feature sets are high dimensional
so it is beneficial to use PCA to reduce the dimensionality prior to normalization
and integration. The Kernel Discriminative Common Vector method is then ap-
plied to the combined feature vector to extract discriminant nonlinear features for
recognition. The method is evaluated on several challenging face datasets includ-
ing FRGC 1.0.4, FRGC 2.0.4 and FERET, with promising results.

1 Introduction

One of the key challenges for face recognition is finding efficient and discriminative
facial appearance descriptors that are resistant to large variations in illumination, pose,
facial expression, ageing, partial occlusions and other changes [32]. Most current recog-
nition systems use just one type of features. However for complex tasks such as face
recognition, it is often the case that no single feature modality is rich enough to capture
all of the classification information available in the image. Finding and combining com-
plementary feature sets has thus become an active research topic in pattern recognition,
with successful applications in many challenging tasks including handwritten character
recognition [9] and face recognition[16].

In this paper, we show that face recognition performance can be significantly im-
proved by combining two of the most successful local appearance descriptors, Gabor
wavelets [12,28,15] and Local Binary Patterns (LBP) [18,19,2]. LBP is basically a fine-
scale descriptor that captures small texture details. Local spatial invariance is achieved
by locally pooling (histogramming) the resulting texture codes. Given that it is also
very resistant to lighting changes, LBP is a good choice for coding fine details of facial
appearance and texture. In contrast, Gabor features [12,28,15] encode facial shape and
appearance information over a range of coarser scales (although they have also been
used as a preprocessing stage for LBP feature extraction [30]). Both representations are

S.K. Zhou et al. (Eds.): AMFG 2007, LNCS 4778, pp. 235–249, 2007.
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rich in information and computationally efficient. Their complementary nature makes
them good candidates for fusion.

Here we evaluate and normalize the two modalities independently before combining
them (although some works argue that it can be more effective to fuse modalities at
an earlier stage of processing [10]). Both feature sets are high-dimensional (typically
at least 104-D) and simply concatenating them would tend to exacerbate any ‘curse
of dimensionality’ problems. To counteract this we run dimensionality reduction on
each modality before fusion. Many dimensionality reduction techniques could be con-
sidered – Principal Component Analysis (PCA) [8], Independent Component Analysis
(ICA) [20], Non-negative Matrix Factorization (NMF) [14], and Canonical Correla-
tion Analysis (CCA) [13] to mention only some of the linear ones – but here we find
that simple PCA suffices. The reduced feature vectors are separately normalized be-
fore being concatenated into a single combined feature vector. Finally the Kernel Dis-
criminative Common Vector (KDCV) [4] method is applied to the combined feature
vector to provide effective multi-class recognition from relatively few training exam-
ples. To illustrate the effectiveness of our approach we present experimental results on
three state-of-the-art face recognition datasets containing large lighting variations simi-
lar to those encountered in natural images taken under uncontrolled conditions: the Face
Recognition Grand Challenge 1.0.4 and 2.0.4 datasets [21] and FERET [22].

2 Related Work

Information fusion for visual recognition can occur at feature-level or at decision-level
[10]. Feature-level methods combine several incoming feature sets into a single fused
one that is then used in a conventional classifier, whereas decision-level ones combine
several classifiers (e.g. based on distinct features) to make a stronger final classifier [11]
(this is also called post-classification fusion or mixture of experts).

Face recognition is an area that is well-suited to the use (and hence fusion) of mul-
tiple classes of descriptors owing to its inherent complexity and need for fine distinc-
tions. Much of the past work in this area adopts classifier-level fusion, e.g. [6,17]. For
example, in [17] PCA, ICA and LDA provide the component subspaces for classifier
combination. Each test sample is separately projected into these three subspaces and
the resulting distance matrices are then fused to make the final decision using either the
sum rule [11] or an RBF network. However motivated by the belief that the original fea-
tures are a richer representation than distance matrices or individual classifier decisions,
several works have studied feature-level fusion. J. Yang et al. [29] concatenate different
features into a single vector and use Generalized PCA for feature exaction. C. Liu et
al. [16] concatenate shape and texture information in a reduced subspace then use an
enhanced Fisher classifier for recognition: their framework has similarities to ours but
the underlying features and recognition methods are different.

Selecting appropriate and complementary component features is crucial for good
performance. There is some work on fusing different biometric modalities (e.g. face
and speech [3], face and fingerprint [23]), but most studies concentrate on fusing dif-
ferent representations of a single underlying modality (e.g. 2D and 3D facial shape in
[6]). Our work belongs to this category, studying the effectiveness of fusing local 2D
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texture descriptors at both the feature and the decision stages but focusing mainly on the
feature based fusion. Our initial experiments selected two of the most successful local
appearance descriptors, Gabor wavelets and LBP, as promising candidates for fusion.
As both features are strongly normalized and quite local in nature, we also test whether
the inclusion of a less-normalized feature set (raw gray levels) further improves the
quality of the combined representation.

Finally, we use a kernel discriminant to extract as much information as possible from
the resulting combined features. Methods such as Kernel Principal Component Analysis
(KPCA) [25] have proven to be effective nonlinear feature extractors and here we use a
related discriminative method, Kernel Discriminative Common Vectors (KDCV). Like
other kernel methods, KDCV uses a nonlinear (kernel) mapping to implicitly transform
the input data into a high dimensional feature space. It then selects and projects out an
optimal set of discriminant vectors in this space, using the kernel trick to express the
resulting computation in terms of kernel values in the input space. A simple Nearest
Neighbour (NN) classifier is applied to the resulting KDCV feature vector. H. Cevikalp
et al. [4] have shown that the combination of KDCV and NN significantly outperforms
several other kernel methods including KPCA+LDA and SVM in related problems.

3 Fusing Gabor and LBP Feature Sets for Kernel-Based Face
Recognition

This section describes the components of our face recognition system in detail: Ga-
bor and LBP features, PCA dimensionality reduction and feature fusion, Kernel DCV
feature extraction and Nearest neighbour recognition. The stages of processing are il-
lustrated in Fig. 1.

Fig. 1. The overall architecture of our face recognition system

3.1 Gabor Features Representation

Gabor wavelets were originally developed to model the receptive fields of simple cells
in the visual cortex and in practice they capture a number of salient visual properties
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including spatial localization, orientation selectivity and spatial frequency selectivity
quite well. They have been widely used in face recognition since the pioneering work
of Lades et al. [12]. Computationally, they are the result of convolving the image with a
bank of Gabor filters of different scales and orientations and taking the ‘energy image’
(pixelwise complex modulus) of each resulting output image. The filters most com-
monly used in face recognition have the form

ψμ,ν(z) =
‖kμ,ν‖2

σ2 e−
‖kμ,ν ‖2‖z‖2

2σ2 [eikμ,νz − e
−σ2

2 ] (1)

where μ and ν define the orientation and scale of the Gabor kernels, z = (x, y), ‖ · ‖
denotes the norm operator, and the wave vector is kμ,ν = kν(cosφμ, sinφμ) where
kν = kmax/fν and φμ = πμ/8 with kmax being the maximum frequency and f be-
ing the spacing factor between kernels in the frequency domain. Many face recognition
studies use 40 Gabor wavelets of five different scales, ν ∈ {0, 1, 2, 3, 4}, and eight ori-
entations, μ ∈ {0, . . . , 7}, with σ = 2π, kmax = π

2 , and f =
√

2. The Gabor wavelet
representation is essentially the concatenated pixels of the 40 modulus-of-convolution
images obtained by convolving the input image with these 40 Gabor kernels. In prac-
tice, before concatenation, each output image is downsampled according to the spatial
frequency of its Gabor kernel and normalized to zero mean and unit variance.

3.2 Local Binary Patterns

Ojala et al. [18] introduced the Local Binary Pattern operator in 1996 as a means
of summarizing local gray-level structure. The operator takes a local neighbourhood
around each pixel, thresholds the pixels of the neighbourhood at the value of the cen-
tral pixel and uses the resulting binary-valued image patch as a local image descriptor.
It was originally defined for 3×3 neighbourhoods, giving 8 bit codes based on the 8
pixels around the central one. Formally, the LBP operator takes the form

LBP (xc, yc) =
∑7

n=0 2n s(in − ic) (2)

where in this case n runs over the 8 neighbours of the central pixel c, ic and in are the
gray-level values at c and n, and s(u) is 1 if u ≥ 0 and 0 otherwise. The LBP encoding
process is illustrated in fig. 2.

Fig. 2. Illustration of the basic LBP operator

Two extensions to the original operator were made in [19]. The first defined LBP’s
for neighbourhoods of different sizes, thus making it feasible to deal with textures at
different scales. The second defined the so-called uniform patterns: an LBP is ‘uniform’
if it contains at most one 0-1 and one 1-0 transition when viewed as a circular bit
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string. For example, the LBP code in fig. 2 is uniform. Uniformity is an important
concept in the LBP methodology, representing primitive structural information such as
edges and corners. Ojala et al. observed that although only 58 of the 256 8-bit patterns
are uniform, nearly 90 percent of all observed image neighbourhoods are uniform. In
methods that histogram LBP’s, the number of bins can be thus significantly reduced
by assigning all non-uniform patterns to a single bin, often without losing too much
information.

LBP’s are resistant to lighting effects in the sense that they are invariant to monotonic
gray-level transformations, and they have been shown to have high discriminative power
for texture classification [18]. T. Ahonen et al. introduced an LBP based method for
face recognition [1] that divides the face into a regular grid of cells and histograms the
uniform LBP’s within each cell. Finally, the cell-level histograms are concatenated to
produce a global descriptor vector. Like the Gabor descriptor, the LBP descriptor is
usually high dimensional. For example, a 128×128 face image with 8×8 pixel cells
produces a 15104-D LBP descriptor vector (256 patches with 59 entries/patch).

3.3 Feature-Level Fusion with PCA

Before combining the Gabor and LBP features, we reduce their dimensionality to re-
move some of the redundancy and noise inherent in them. Given that we will later be
feeding the results to a sophisticated nonlinear discriminant feature extractor (KDCV),
we do not attempt to select discriminative directions at this stage. Instead we use simple
PCA-based dimensionality reduction [8], retaining enough components to give KDCV
scope to find good discriminant directions while still significantly reducing the size
and redundancy of the data. Other methods could be used (ICA, CCA, NMF, etc), but
PCA has the advantage of minimizing reconstruction error without making strong as-
sumptions about the nature or use of the resulting data – we prefer to postpone such
assumptions to the classifier stage.

Formally, let faces be represented by n-D vectors x. PCA seeks a set of m orthogo-
nal directions that capture as much as possible of the variability of the face set {x}, or
equivalently an m-D projection y of x from which x can be reconstructed with as little
error as possible. Encoding these directions as an n × m matrix U with orthonormal
columns, we seek to maximize tr(UT CU) where C is the covariance matrix of the face
set {x}. This leads to an eigenvalue problem CU = UΛ where Λ = diag(λ1, . . . , λm)
is the matrix of eigenvalues of C. For the best reconstruction we need to take the m
largest eigenvalues. Then given x, its projection is y = UT (x − μ) and its reconstruc-
tion is x ≈ Uy+μ where μ is the mean of the training set {x}. m necessarily satisfies
m ≤ min(n, N − 1) where N is the number of training samples. In the experiments
below N � n and we preserve as much discriminant information as we can by taking
m to be large enough to include all ‘significantly non-zero’ eigenvalues, so in practice
m ≈ N − 1.

Letting x1 ∈ Rn1 and x2 ∈ Rn2 be respectively the Gabor and LBP features of
a face image, and y1 = UT

1 (x1 − μ1), y2 = UT
2 (x2 − μ2) be the corresponding

centred and PCA-reduced vectors, the combined feature vector z ∈ Rm1+m2 is then
the ‘z-score’ normalized combination
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z = (y1/σ1,y2/σ2)T (3)

where σ1, σ2 are the (scalar) standard deviations of y1,y2.

3.4 Seeking Optimal Discriminant Subspace with Kernel Trick

The next stage of the process extracts optimally discriminative nonlinear features from
the combined feature vector z. This is the only point at which class label information is
used during training. It is based on a kernelized variant of Linear Discriminant Analysis
(LDA) [24] called KDCV [4]. Classical LDA seeks a low-dimensional projection matrix
P that maximizes the objective function

J(P) =
PT SBP
PT SW P

(4)

where SB denotes the between-class and SW the within-class scatter matrix of the
training data. Formally the solution is given by the largest-eigenvalue eigenvectors of
S−1

W SB . However this is not always stably computable. In particular, if there are more
feature dimensions than training examples or if the examples lie in a lower dimensional
affine subspace – both of which are true in our case – SW is rank deficient and its
inverse does not exist. The singularity is intrinsic in the sense that directions in the null
space of SW have no observed covariance so LDA predicts that they should be infinitely
discriminant. In particular, if SB has a nontrivial projection along these directions, LDA
considers the corresponding classes to be perfectly separable. Techniques proposed to
solve this classical problem include the perturbation method [31], two stage PCA+LDA
[26], and the null space methods pioneered by Chen et al. [7]. The latter have dominated
research in recent years. They focus only on the null space of SW , so they are really
complements to traditional LDA not stabilized variants of it. They optimize the null
space based LDA criterion

J(P) = max
|PT SW P|=0

|PT ST P| (5)

where ST = SB + SW is the total scatter matrix of the training set. Cevikalp et al. [4]
proved that the optimal discriminant subspace in the sense of (5) is the intersection of
the null space N(SW ) of SW and the range space R(ST ) of ST , and to find it one can
first project the training set sample onto N(SW ) and then apply PCA. This method is
called Discriminative Common Vectors (DCV) [5] because all of the training samples
in a class are projected to a unique vector in N(SW ) called the class’ common vector.
It can be shown that if the affine spans of the training sets are linearly separable, the
corresponding common vectors are distinct resulting in a perfect recognition rate [5].

In many face recognition problems the class distributions are not separable using
linear DCV but introducing a nonlinear embedding φ : Rd 	→ F into a kernel-induced
feature space F allows them to be separated. Kernel DCV [4] finds projection vectors
that optimize the null space LDA criterion (5) in the induced feature space F by apply-
ing KPCA to project the training set onto the range space R(Sφ

T ) of Sφ
T , the total scatter

matrix induced in F , then finding an orthonormal basis for the null space N(Sφ
W ) of
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the within-class scatter matrix Sφ
W within this range space. The computation is kernal-

izable (expressible using inner products) precisely because it suffices to work within
the span of Sφ

T : although N(Sφ
W ) typically contains many directions orthogonal to this,

they are irrelevant as far as inter-class discrimination is concerned because test sam-
ple components in these directions are identical for all classes and hence not useful for
discrimination based on this training set.

We will only summarize KDCV briefly here. See [4] for details. Let K̃ be the empir-
ical kernel matrix of the training set, with eigendecomposition K̃ = UΛUT where Λ
is the diagonal matrix of nonzero eigenvalues. U, the associated matrix of normalized
eigenvectors, doubles as a basis for the span of Sφ

T . Let Φ be the matrix of the centered
training set with respect to the empirical feature space. The matrix that projects the
training set onto R(Sφ

T ) is then ΦUΛ−1/2. This is used to obtain the projected within-
class scatter matrix S̃Φ

W , from which a basis V for the null space of S̃Φ
W is obtained:

VT S̃Φ
W V = 0 (6)

The optimal projection matrix P is then:

P = ΦUΛ−1/2 V (7)

3.5 Face Recognition in the Optimal Discriminant Subspace

When a face image is presented to the system, its Gabor and LBP representations are
extracted, projected into their PCA subspaces, normalized separately (3) and integrated
into a combined feature vector ztest, which is then projected into the optimal discrimi-
nant space by

Ωtest = PT φ(ztest) = (UΛ−1/2 V)T ktest (8)

where P is the optimal projection matrix given by (7) and ktest ∈ RM is a vector
with entries K(zi

m, ztest) = 〈φ(zi
m), φ(ztest)〉, where φ(zi

m) are the mapped training
samples. The projected test feature vector Ωtest is then classified using the nearest
neighbour rule and the cosine ‘distance’

dcos(Ωtest, Ωtemplate) = − ΩT
testΩtemplate

‖Ωtest‖‖Ωtemplate‖
(9)

where Ωtemplate is a face template in the gallery set. Other similarity metrics such as
L1, L2 or Mahalanobis distances could be used, but [15] found that the cosine distance
performed best among the metrics it tested on this database, and our initial experiments
confirmed this.

4 Experiments

We now present experiments designed to illustrate the effectiveness of the proposed
method. Three publicly available databases containing large illumination variations
were used: Face Recognition Grand Challenge version 1 experiment 1.0.4 (‘FRGC-
104’) and version 2 experiment 2.0.4 (‘FRGC-204’) [21], and the FERET dataset [22].



242 X. Tan and B. Triggs

(a) (b)

Fig. 3. Examples of images from FRGC-104: (a) target images (upper row) and query images
(lower row) without illumination preprocessing; (b) the corresponding illumination normalized
images from the proposed preprocessing chain.

We first conducted a series of pilot experiments on the FRGC-104 dataset, then we
verified the results on FERET and the challenging FRGC-204 dataset.

4.1 Experimental Settings

Prior to analysis, all images undergo geometric and photometric normalization to
counter the effects of pose and illumination variations, local shadowing and highlights.
First they are converted to 8 bit gray-scale, rigidly scaled and rotated to place the cen-
ters of the two eyes at fixed image positions using the eye coordinates supplied with the
original datasets, and cropped to 128×128 pixels. Then they are photometrically nor-
malized using the following sequence of steps: strong gamma compression; Difference
of Gaussian (DoG) filtering; robust normalization of the range of output variations; and
sigmoid-function based compression of any remaining signal highlights. A detailed de-
scription of this simple but very effective normalization procedure can be found in [27].
Some examples of preprocessed images are shown in Fig. 3.

The downsampling factor for the Gabor features is set to 64, resulting a dimension-
ality of 10 240 (128 · 128 · 40/64), while the cell size of the LBP features is set to
8×8 pixels, giving a dimensionality of 15 104. For the kernel method we tried poly-
nomial kernels k(x,y) = (〈x,y〉)n with degrees n = 2, 3 and Gaussian kernels
k(x,y) = e−‖x−y‖2/(2σ2) with scale parameter chosen on a validation set and reported
the best result.

4.2 Results on FRGC-104

The FRGC-104 dataset [21] is challenging because although the gallery images were
obtained under carefully controlled conditions, the probe images were captured in un-
controlled indoor and outdoor settings with large changes in illumination, appearance
and expression. Fig. 3 shows some examples. For the experiments reported here the
gallery contains 152 people with one image per person, while the probe set contains
608 images of the 152 subjects. For training we chose the 886 images of 198 subjects
with at least two images per subject from the FRGC-104 training set. There is no over-
lap between the training, gallery and probe sets. Besides the well-normalized LBP and
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Fig. 4. The comparative recognition performance of KDCV/NN on different feature sets

Table 1. FRGC-104 recognition rate (%) for different feature sets and different recognition meth-
ods. The asterisks indicate performance differences that are statistically significant at the 5% level
between the given method and the corresponding result in bold.

Input Features LDA DCV KPCA KDCV
Gabor 52.3* 82.2* 45.1* 83.7*
LBP 50.8* 78.6* 52.7 83.4*
Gray value 36.2* 63.2* 35.2* 66.9*
Gabor+LBP 56.1 89.1 50.0 89.3
Gabor+LBP+Gray value 59.7 89.8 53.5 90.6

Gabor local texture features, we also test whether the inclusion of raw gray-level image
pixels can improve the results.

Fig. 4 shows the FRGC-104 performance of our Kernel DCV/NN method for sev-
eral different types of input features. As expected the raw pixel features perform poorly
owing to their sensitivity to various common appearance variations, while both Gabor
wavelets and LBP features give much better, and here very similar, performance. How-
ever, fusing the Gabor and LBP features still provides a significant performance gain –
about 6.0% relative to either feature set individually – which suggests that these two fea-
ture sets do indeed capture different and complementary information. Incorporating the
somewhat unreliable information provided by raw gray-levels provides a modest further
improvement, reaching a rank 1 recognition rate of over 90%. This suggests that there
is scope for further improvement by including additional higher-quality feature sets.

We also checked the effects of using our combined features in several other popular
face recognition frameworks including LDA, DCV and KPCA. The results are shown
in Table 1. The recognition performance of every method was improved by using the



244 X. Tan and B. Triggs

Fig. 5. The influence of PCA dimension (percentage of total energy preserved during the PCA)
on FRGC-104 recognition rate

combined features as input. Among the methods compared, KDCV consistently per-
forms best, particularly on the combined features ‘Gabor+LBP+Gray value’.

The influence of different PCA projection dimensions (as represented by the per-
centage of the total energy retained by the projection) is illustrated in fig. 5. The figure
reveals a positive, albeit somewhat irregular, correlation between PCA energy (projec-
tion dimensionality) and recognition rate, underlining the importance of preserving as
much as possible of the original information during the projection. In particular, in-
creasing the energy retained from 70% to 85% gives a 30% improvement in recognition
rate. However, note that the maximum possible PCA dimension is limited by the num-
ber of training samples and that for larger samples than those used here some overfitting
may occur if all of the dimensions are used.

To compare the relative effectiveness of feature-level and decision-level fusion we
conducted some experiments based on a simple decision-level fusion method. We
project each test image onto three KDCV discriminant subspaces trained respectively
with Gabor wavelets, LBP features and gray-value features, and for each feature class
we compute the cosine distances between the test image and the gallery templates. The
z-score normalization procedure (3) is applied to the three distance matrices, and they
are then combined by simple addition. As before, test samples are assigned to the class
containing the closest template under the combined distance metric and we considered
several different feature combinations.

The results for ‘Gabor + LBP’ and ‘Gabor + LBP + Gray value’ are shown in
fig. 6. The decision-level ‘Gabor + LBP’ method predominates. As a general rule, both
decision-level and feature-level fusion benefited from using a mixture of different fea-
ture types. The main exception was that for decision-level fusion, the ‘Gabor+LBP’
scheme worked significantly better than the ‘Gabor+LBP+Gray value’ one. Decision-
level fusion by simple averaging tends to be sensitive to the performance of the worst
of its component classifiers, and to perform best when they are both diverse and uni-
formly accurate, whereas here the raw pixel based classifier is significantly weaker than
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Fig. 6. The comparative face recognition performance of feature level fusion and decision-level
averaging on FRGC-104

Table 2. CPU times (s) for FRGC-104 recognition runs on a 2.8 GHZ single processor PC

Features Gabor LBP Gray value Gabor+LBP Gabor+LBP+Gray value
CPU Time 73.9 74.2 72.8 60.5 61.96

the other two, thus decreasing the overall system performance. In contrast, feature-level
fusion provided a performance increment for each new feature set included in its pool.

Regarding computational cost, average CPU times for complete recognition runs
on FRGC-104 on our 2.8 GHz single processor PC are shown in Table 2. Note that
the combined feature sets actually have lower cost than the individual features: after
reduction, the combined features have lower dimensionality than the individual ones
and most of the run time is spent doing KDCV and NN search in this reduced space.

4.3 Results on FERET

A second series of experiments was conducted on the FERET dataset. This contains five
standard partitions: ‘fa’ is the gallery containing 1196 grayscale images and ‘fb’, ‘fc’,

Fig. 7. Some sample images from the FERET dataset
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Table 3. Comparative recognition rates of various methods on the FERET partitions

Method fb fc dup1 dup2
Fisherfaces[30] 0.94 0.73 0.55 0.31
Best Results of [22] 0.96 0.82 0.59 0.52
Best Results of [1] 0.97 0.79 0.66 0.64
Best Results of [30] 0.98 0.97 0.74 0.71
Our ‘Gabor+LBP’ method 0.98 0.98 0.90 0.85

‘dup1’ and ‘dup2’ are four sets of probe images. The diversity of the probe images is
across gender, ethnicity and illumination (‘fc’), expression (‘fb’) and age/time (‘dup1’
and ‘dup2’). Some examples of FERET images are shown in fig. 7. All of the images
were preprocessed as described in section 4.1. The gallery set is always available to a
face recognition system so in addition to the distributed training set we used the images
in ‘fa’ to train the Kernel DCV classifier. As there is only one image per person in ‘fa’,
these images do not contribute to the null space of the within-class scatter matrix, but
they do help to shape the between-class distribution and to increase the dimensionality
of final discriminative subspace.

We compared the proposed ‘Gabor+LBP’ method to several previously published
results on FERET including Fisherfaces, the best result in FERET’97 [22], and the re-
cent results of [1] and [30]. The rank-1 recognition rates of the different methods on
the FERET probe sets are shown in table 3. The performance of the proposed method
is comparable to or better than existing state-of-the-art results on this dataset, espe-
cially on the challenging probe sets ‘dup1’ and ‘dup2’. Besides better performance, our
method also requires much less memory than weighted LGBPHS [30], which allows it
to scale efficiently to large datasets such as FRGC version 2.

4.4 Results on FRGC-204

FRGC-204 is the most challenging FRGC experiment [21]. It extends the FRGC-104
dataset, defining a standard tripartite partition into a training set of 12,776 images (in-
cluding both images with controlled lighting and uncontrolled ones), a target set of
16,028 controlled images, and a query set of 8,014 uncontrolled images. Again the pre-
processing method described in section 4.1 was used. To allow a better comparison with
the state of the art on this dataset we used the training set of [15], which includes 6,388
images selected from the full FRGC-204 training set.

The results of FRGC version 2 experiments are usually reported using the Receiver
Operating Characteristic (ROC) curves for Face Verification Rate (FVR) as a function of
False Accept Rate (FAR). For a given distance matrix three types of ROC curves can be
generated by the Biometric Experimentation Environment (BEE): ROC-I, ROC-II,and
ROC-III, corresponding respectively to images collected within a semester, within a
year, and between semesters. Owing to space limitations we report results only for
ROC-III (the most commonly reported benchmark) – see fig. 8. The figure shows that
the proposed ‘Gabor+LBP’ method increases the FVR over separate Gabor or LBP
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Fig. 8. FRGC-204 face recognition performance (ROC-III curves) for Gabor, LBP and Ga-
bor+LBP methods. The FRGC baseline performance is also included for comparison.

from 73.5% to 83.6% at 0.1% FAR. The best previous performance that we are aware
of on this dataset at 0.1% FAR is 76.0% FVR [15].

5 Conclusions

This paper investigated the benefits of combining two of the most successful feature
sets for robust face recognition under uncontrolled lighting: Gabor wavelets and LBP
features. We found that these features are more complementary than might have been
expected, with the combination having only around 2/3 of the errors of either feature set
alone. The method was tested in a novel face recognition pipeline that includes: robust
photometric image normalization; separate feature extraction, PCA-based dimension-
ality reduction and scalar variance normalization of each modality; feature concate-
nation; Kernel DCA based extraction of discriminant nonlinear features; and finally
cosine-distance based nearest neighbour classification in the KDCA reduced subspace.
The proposed face recognition method is scalable to large numbers of individuals and
easy to extend to additional feature sets. We illustrated its performance with a series
of comparative experiments on the challenging FRGC version 1 experiment 4, FRGC
version 2 experiment 4, and FERET datasets.

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive sugges-
tions and H. Cevikalp for helpful discussions. The research used the FERET and FRGC
face datasets collected respectively under the FERET and FRGC programs.



248 X. Tan and B. Triggs

References

[1] Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In:
Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Hei-
delberg (2004)

[2] Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Appli-
cation to face recognition. IEEE TPAMI 28(12) (2006)

[3] Ben-Yacoub, S., Abdeljaoued, Y., Mayoraz, E.: Fusion of face and speech data for person
identity verification. IDIAP-RR 03, IDIAP (1999)

[4] Cevikalp, H., Neamtu, M., Wilkes, M.: Discriminative common vector method with kernels.
IEEE TNN 17(6), 1550–1565 (2006)

[5] Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for
face recognition. IEEE TPAMI 27(1), 4–13 (2005)

[6] Chang, K., Bowyer, K., Flynn, P., Chen, X.: Multi-biometrics using facial appearance, shape
and temperature. In: Proc. AFGR 2004, pp. 43–48 (2004)

[7] Chen, L.-F., Liao, H.-Y.M., Ko, M.-T., Lin, J.-C., Yu, G.-J.: A new lda-based face recog-
nition system which can solve the small sample size problem. Pattern Recognition 33(10),
1713–1726 (2000)

[8] Hotelling, H.: Analysis of a complex of statistical variables into principal components. J.
Educational Psychology 24, 417–441 (1933)

[9] Huang, Y.S., Suen, C.Y.: A method of combining multiple experts for the recognition of
unconstrained handwritten numerals. IEEE TPAMI 17(1), 90–94 (1995)

[10] Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems.
Pattern Recognition 38(12), 2270–2285 (2005)

[11] Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE TPAMI 20(3),
226–239 (1998)

[12] Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., von der Malsburg, C., Wurtz, R.P.,
Konen, W.: Distortion invariant object recognition in the dynamic link architecture. IEEE
Trans. Comput. 42(3), 300–311 (1993)

[13] Lai, P.L., Fyfe, C.: Kernel and nonlinear canonical correlation analysis. IJCNN 04, 4614
(2000)

[14] Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp.
556–566 obtainable2 (2000)

[15] Liu, C.: Capitalize on dimensionality increasing techniques for improving face recognition
grand challenge performance. IEEE TPAMI 28(5), 725–737 (2006)

[16] Liu, C., Wechsler, H.: A shape- and texture-based enhanced fisher classifier for face recog-
nition. IEEE TIP 10(4), 598–608 (2001)

[17] Lu, X., Wang, Y., Jain, A.: Combining classifiers for face recognition. In: ICME 2003.
Multimedia and Expo. 2003 (2003)

[18] Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with
classification based on feature distributions. Pattern Recognition 29 (1996)

[19] Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invarianat
texture classification with local binary patterns. IEEE TPAMI 24(7), 971–987 (2002)

[20] Comon, P.: Independent component analysis-a new concept? Signal Processing 43, 287–314
(1994)

[21] Phillips, P.J., Flynn, P.J., Scruggs, W.T., Bowyer, K.W., Chang, J., Hoffman, K., Marques,
J., Min, J., Worek, W.J.: Overview of the face recognition grand challenge. In: Proc. CVPR
2005, San Diego, CA, pp. 947–954 (2005)

[22] Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for
face-recognition algorithms. IEEE TPAM 22(10), 1090–1104 (2000)



Fusing Gabor and LBP Feature Sets 249

[23] Ross, A., Jain, A.: Information fusion in biometrics. Pattern Recogn. Lett. 24(13), 2115–
2125 (2003)

[24] Fisher, R.R.: The use of multiple measurements in taxonomic problems. Ann. Eugen 7,
179–188 (1936)

[25] Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, Cambridge (2001)

[26] Swets, D.L., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE
TPAMI 18(8), 831–836 (1996)

[27] Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult
lighting conditions. In: Zhou, S.K., et al. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 168–
182. Springer, Heidelberg (2007)

[28] Wiskott, L., Fellous, J.-M., Kruger, N., von der Malsburg, C.: Face recognition by elastic
bunch graph matching. IEEE TPAMI 19(7), 775–779 (1997)

[29] Yang, J., Yang, J.-Y.: Generalized k-l transform based combined feature extraction. Pattern
Recognition 35(1), 295–297 (2002)

[30] Zhang, W., Shan, S., Gao, W., Zhang, H.: Local Gabor Binary Pattern Histogram Sequence
(LGBPHS): A novel non-statistical model for face representation and recognition. In: Proc.
ICCV 2005, Beijing, China, pp. 786–791 (2005)

[31] Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal components
for face recognition. In: FG 1998, Washington, DC, USA, p. 336 (1998)

[32] Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey.
ACM Computing Survey 34(4), 399–485 (2003)



A Unified Framework of Subspace and Distance Metric
Learning for Face Recognition

Qingshan Liu1,2 and Dimitris N. Metaxas1

1 The department of computer Sciences, Rutgers University
2 National Laboratory of Pattern Recognition, CAS, China

Abstract. In this paper, we propose a unified scheme of subspace and distance
metric learning under the Bayesian framework for face recognition. According to
the local distribution of data, we divide the k-nearest neighbors of each sample
into the intra-person set and the inter-person set, and we aim to learn a distance
metric in the embedding subspace, which can make the distances between the
sample and its intra-person set smaller than the distances between it and its inter-
person set. To reach this goal, we define two variables, that is, the intra-person
distance and the inter-person distance, which are from two different probabilistic
distributions, and we model the goal with minimizing the overlap between two
distributions. Inspired by the Bayesian classification error estimation, we formu-
late it by minimizing the Bhattachyrra coefficient between two distributions. The
power of the proposed approach are demonstrated by a series of experiments on
the CMU-PIE face database and the extended YALE face database.

1 Introduction

Face recognition is a hot topic in the communities of computer vision and pattern recog-
nition due to its potential applications in biometrics, surveillance, human-computer in-
terface, and multimedia. A lot of methods have been proposed in the past decades [31].

Since Principal Component Analysis(PCA) achieved much success in EigenFace
[25], subspace learning methods have been widely used for facial feature representation.
The general goal of subspace learning is to find some transformation to project high-
dimensional data into a low-dimensional subspace. Defining different objective func-
tions will produce different subspaces. We will review some popular subspace methods
in Section 2. However, same as most pattern recognition problems, similarity measure-
ment or classification scheme is needed to further analyze the relationship of the data or
to predict their labels based on the extracted features for face recognition. The simple
Euclidean distance is often used to measure the similarities between two face images
in the subspace, but it is not a better metric in most cases. Distance metric learning is a
technique to learn a distance based similarity measurement and classification scheme,
and has attracted much attention in machine learning and computer vision in recent
years. Its original goal is to directly learn the distance metric from the available train-
ing data, in order to improve the performance of distance-based classifiers. Due to the
encouraging effectiveness of the simple nearest neighbor rule, most studies focused on
learning the similarity matrix of the Mahalanobis distance to improve the performance
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of the nearest neighbor classification. A common strategy is to minimize various sep-
aration criteria between the classes assuming equivalent relations over all the data or
the k-nearest neighbors. A brief review will be given in Section 2. However, for high
dimensional data, such as face image data (the dimension of an image with the size of
100 × 100 is up to 104), learning the metric matrix directly in such a high dimensional
space, not only results in high computational cost, but also is sensitive to noise.

In this paper, we propose a unified scheme of subspace and distance metric learning
for face recognition under the Bayesian framework. In order to learn a local distance
metric with subspace dimensionality reduction, we divide the k-nearest neighbors of
each sample into the intra-person set and the inter-person set according to the local
distribution of the data, and we aim to make the distances between the sample and
its intra-person set smaller than the distances between it and its inter-person set in the
embedding subspace, so as to handle the high-dimensional data well. We define two
variables in the subspace, i.e., the intra-person distance and the inter-person distance,
and model them with two different probability distributions. Thus, the problem can be
converted to minimize the overlap between two distributions. Inspired by the Bayesian
classification error estimation, we formulate it by minimizing the Bhattachyrra coeffi-
cient measurement between two distributions, and the solution can be obtained by the
gradient descent optimization. The proposed work has some special characteristics: 1)
It is based on the local neighbors, so it does not make assumption on the global distrib-
ution of the data like Linear Discriminant Analysis (LDA). 2) It can be directly used for
multi-class problems without any modification or extension. 3) It links to Bayesian clas-
sification error and has an intuitionistic geometric property due to adoption of the Bhat-
tachyrra coefficient measurement. We conduct the experiments on two benchmarks, the
CMU-PIE face database [21] and the extended YALE face database [15], and the ex-
perimental results show the promising performance of the proposed work compared to
the state-of-the-arts.

2 Related Work

Subspace learning is a popular approach of face recognition. It maps the high dimen-
sional face image data into a low dimensional subspace based on some criteria. Eigen-
face [25]and Fisherface [5] [30]are two classic methods, which are based PCA and
LDA respectively. PCA seeks to maximize the covariance over the whole data, so it is
optimal for data reconstruction, but it is not optimal for classification. The idea of LDA
is to find a linear subspace projection that maximizes the between-class scatter and
minimizes the within-class scatter. However, LDA assumes that each class has a simi-
lar within-class distribution of samples. Kernel PCA (KPCA) and Kernel LDA (KDA)
combine the nonlinear kernel trick with PCA and LDA to get nonlinear principal com-
ponent and discriminant subspaces [19] [16]. However, for the kernel methods, the
kernel function design is still an open problem, and different kernels will give different
performances. Manifold based subspace methods, such as LLE [17] and ISOMAP
[23], aim to preserve the local geometric relations of the data in both the original
high dimensional space and the transformed low dimensional space, while they often
have a problem of ”out of sample”. Local Preserving Projection (LPP) gives a linear
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approximation of manifold structure to deal with this problem [13]. In [8], the idea of
LDA is integrated into LPP to enhance the discriminating performance of LPP. In [22],
M. Sugiyama proposed to compute the within-class scatter and between-class scatter in
LDA with a weighting scheme inspired by LPP. A generalized interpretation for these
methods based on graph analysis is discussed in [28]. From the view of subspace di-
mensionality reduction, our work is similar to LDA, which aims to find a transformation
of separating one class from the others, and it can be also extended with the kernel trick.
However, our work is different from LDA in that: no constraints are made on the global
distribution of the data, because it is based on the local neighbors’ distribution, and it
preserves the neighborhood relationship of the data during the dimension reduction as
in manifold learning.

Subspace learning can be thought as a method of feature representation, while dis-
tance metric learning is related to constructing a data classification scheme. It is well
known that the nearest neighbor rule is simple and surprisingly effective. However, its
performance crucially depends on the distance metric. For different distance metrics, it
will produce different nearest neighbor relationships. Most previous studies aim to im-
prove the performance of the nearest neighbor classification by learning a distance met-
ric based on the Mahalanobis distance from the labeled samples. E. Xing et al [27] tried
to find an optimal Mahalanobis metric from contextual constrains in combination with
a constrained K-means algorithm. B. Hilled et al [4] [20] proposed a much simpler ap-
proach called Relevance Component Analysis (RCA), which identities and downscales
global unwanted variability within data. However, it does not consider the between class
pair-wise information, which will influence its performance on classification [14]. K.
Q. Weinberger et al [26] proposed to learn the distance metric by penalizing large dis-
tances between each input and its neighbors and by penalizing small distances between
each input and all other inputs that do not share the same label. Its solution is based on
complex quadratic programming. Torresani and Lee [24] extended this method with
dimensional reduction, but its objective function is non-convex. Neighborhood Compo-
nent Analysis (NCA) aimed at directly maximizing a stochastic variant of the leave one
out K-NN score on the training set [12]. Later, A. Globerson et al [11] converted the
formula of NCA to a convex optimization problem with a strong assumption that all the
samples in the same class were mapped to a single point and infinitely far from points in
different classes. Actually, this assumption is unreasonable for practical data. In [29],
the bound optimization algorithm [18] was adopted to search a local distance metric
for the non-convex function. Most of the above methods do not consider the dimen-
sionality reduction for high dimensional data except for RCA [4] [20], NCA [12], and
[24]. However, the proposed method is different from them in that it links to Bayesian
classification error and has an intuitionistic geometric property due to adoption of the
Bhattachyrra coefficient measurement.

3 Our Work

In this section, we propose a new unified framework of subspace and distance met-
ric learning, which is inspired by the Bayesian classification error estimation. We first
present our purpose and then give a Bhattacharyya coefficient based solution.
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3.1 The Purpose

Let X = {x1, x2, · · · , xn} ∈ RD denote the training set of n labeled samples in C
classes. Let l(xi) be the label of sample xi, i.e.,l(xi) ∈ {1, 2, . . . , C}. Most distance
metric learning methods seek to directly find a similarity matrix Q based on the Ma-
halanobis distance to maximize the performance of the nearest neighbor classification.
The Mahalanobis distance between samples xi and xj is defined as follows:

Pi,j = (xi − xj)T Q(xi − xj). (1)

However, learning Q directly in a high dimensional space, such as the image space,
will be sensitive to noise to some extent, besides being computationally expensive.

Since Q is a D × D semi-definite matrix, it can be rewritten as: Q = AAT . If the
dimension of A is D × d, d < D, (1) is equivalent to calculating the Euclidean distance
in the transformed subspace with A.

Pi,j = ‖AT xi − AT xj‖2 = (xi − xj)T AAT (xi − xj). (2)

Thus, the distance metric Q for high dimensional data can be computed by an explicit
embedding transformation A. In this paper, we will focus on how to first learn this
transformation A, and then compute Q. Actually the transformation A is corresponding
to subspace dimension reduction, so this idea is equivalent to integrating the subspace
and distance metric learning together.

Before presenting the details of our approach, we first give some definitions. The
set Nr(xi) is the k-nearest neighbors of sample . Same as in [26] [24], the neighbors
are computed by the Euclidean distance in the original data space. We divide Nr(xi)
into two sets using the labels of the samples, Nr(xi) = Si

⋃
Di, where the labels of

the set Si are same as the label of xi, xs ∈ Si, l(xs) = l(xi), and the samples in Di

have different labels from the sample xi, xd ∈ Di, l(xd) �= l(xi),. We call them the
intra-person set and inter-person set respectively in this paper.

Intuitively, a good distance metric should make each sample close to the samples
in the same class and far from the samples in the different classes. Based on the near-
est neighbor classification scheme, we can compare each sample against its k-nearest
neighbors. We aim to find a distance metric that makes each sample far from the sam-
ples in its inter-person set and close to the samples in its intra-person set. Thus, our goal
can be described as follows:

Given any samples xi and its two kinds of neighbors xs ∈ Si and xd ∈ Di, the
intra-person distance Pis(A) between xi and xs should be smaller than the inter-person
distance Pid(A) between xi and xd:

Pis(A) = ‖AT (xi − xs)‖2, xs ∈ Si, (3)

Pid(A) = ‖AT (xi − xd)‖2, xd ∈ Di, (4)

Pis(A) < Pid(A), for∀i, s, d. (5)
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3.2 Bhattacharyya Coefficient Based Solution

For convenience, we define the variable Ps(A) to represent all the intra-person dis-
tances, Ps(A) = {Pis(A)} for all the i and s, and the variable Pd(A) to represent
all the inter-person distances, Pd(A) = {Pid(A)} for all the i and d. Assuming that
Ps(A) and Pd(A) are from two distributions respectively, Ps(A) ∼ ρs(P (A)) and
Pd(A) ∼ ρd(P (A)), we can achieve our goal to find a transformation A that minimizes
the overlap between these two distributions. Figure 1 gives an illustration, where x rep-
resents the distance P (A). It can be found that minimizing the overlap means to sep-
arate the intra-person distances Ps(A) from the inter-person distances Pd(A) as much
as possible, and it is also equivalent to minimizing the up-boundary of the classification
error as much as possible under the Bayesian framework.

Fig. 1. An illustration of minimizing the overlap

The Bhattacharyya coefficient is a divergence-type measure which has an has an
intuitionistic geometric interpretation [9]. Moreover, it is a popular technique to es-
timate the boundary of the classification error, i.e., the overlap between two distribu-
tions [10]. Given two distributions, ρ1(x) and ρ2(x), their Bhattacharyya coefficient is∫ √

ρ1(x)ρ2(x)dx. A small Bhattacharyya coefficient means a small overlap between
two distributions which may lead to a small classification error. Thus, we define the
objective function with Bhattacharyya coefficient between ρs(P (A)) and ρd(P (A)) as
follows:

JB(A) = max
A

(− ln
∫ √

ρs(P (A))ρd(P (A))dP (A)). (6)

In this paper, we regard the variables of the intra-person distance and inter-person
distance as two different Gaussian distributions. We define the mean and variance of
all the Ps(A) distances as μs(A) and Σs(A), and the mean and covariance of all the
Pd(A) vectors as μd(A) and Σd(A) i.e.,

ρs(P (A)) = N(μs(A), Σs(A)), (7)

ρd(P (A)) = N(μd(A), Σd(A)), (8)
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where N(μ, Σ) represents a Gaussian distribution with mean μ and covariance Σ. Now
the objection function (6) can be written as [10]:

JB(A) = max
A

{
1
4

(μs(A) − μd(A))2

Σs(A) + Σd(A)
+

1
2

ln
Σs(A) + Σd(A)
2
√

Σs(A)Σd(A)

}
(9)

Denote E(·) represents the expectation operation, and Tr(X) is the trace of the
matrix X . Since any ‖AT xij‖2 = Tr(AT xijx

T
ijA), where xij = xi − xj , we have

μs(A) = E(Ps(A)) = E(Tr(AT xisx
T
isA)) = Tr(AT E(xisx

T
is)A) = Tr(AT MsA)

(10)

μd(A) = E(Pd(A)) = E(Tr(AT xidxT
idA)) = Tr(AT E(xidxT

id)A) = Tr(AT MdA)
(11)

Σs(A) = E(Ps(A) − μs(A))2 = E(Ps(A))2 − μ2
s(A) (12)

Σd(A) = E(Pd(A) − μd(A))2 = E(Pd(A))2 − μ2
d(A) (13)

The solution of (9) can be obtained by the gradient descent algorithm, such as the
conjugate gradient method. For simplicity, we ignore (A) in all the JB(A), μs(A),
Σs(A), μd(A), and Σd(A). The differentiation of JB with respect to A is as follows:

∂JB

∂A
=

(μs − μd)( ∂μs
∂A

− ∂μd
∂A

) + ( ∂Σs
∂A

+ ∂Σd
∂A

)

2(Σs + Σd)
−

(μs − μd)
2( ∂Σs

∂A
+ ∂Σd

∂A
)

4(Σs + Σd)2
−

∂Σs
∂A

2Σs
−

∂Σd
∂A

2Σd

(14)
where

∂μs

∂A
= 2MsA (15)

∂μd

∂A
= 2MdA (16)

∂Σs

∂A
= 4E(Tr(AT xisx

T
isA)xisx

T
isA) − 4Tr(AT MsA)MsA (17)

∂Σd

∂A
= 4E(Tr(AT xidxT

idA)xidxT
idA) − 4Tr(AT MdA)MdA (18)

From the above description, we can see that the proposed method tries to find the
embedding subspace during learning the distance metric inspired by the Bayesian clas-
sification error estimation. The transformation A does not change the k-nearest neigh-
borhood relationship of the data, which is similar to the local preserving property of
manifold learning, but it is different from popular manifold learning methods in that it
aims to make each sample far from its inter-person set and close to its intra-person set.
Although we use the Gaussian distribution to model the the variables of the intra-person
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distances and inter-person distances in the subspace, they are based on the local neigh-
bors, so we do not make assumption on the global distribution of the data compared
to LDA. Compared with most distance metric learning methods, the proposed method
uses the Bhattacharyya coefficient measurement, which has intuitionistic geometric in-
terpretation and links to Bayesian classification error under the Bayesian framework.
The proposed method can handle high dimensional data well.

4 Experiments

We test the proposed method on the two benchmarks, i.e., the CMU-PIE face database
[21] and the extended YALE face database [15]. The data of the two face databases
are available in [1]. In our experiments, we take the PCA as the baseline, where we
keep 98% energy of eigenvalues. We compare the proposed method with related works,
i.e., LDA, RCA, and NCA. The codes of RCA and NCA are downloaded from [2] and
[3] respectively. For RCA, we use the prior label information to form the chunklets. In
addition, we also compare the proposed method with the Bayesian face subspace (BFS)
[6]. In the Bayesian face subspace, the face images are modeled by the intra-face and the
inter-face subspaces, which are represented by PCA directly in the input data space. For
the Bayesian face subspace, we construct the principal subspace with the 90% energy
of the eigenvalues, and the complemental subspace with the rest of 10% energy. In the
experiments, we set the number of neighbors k as the training numbers of each class
minus 1.

4.1 CMU-PIE Face Database

The CMU PIE face database contains 68 subjects and 41368 images [25]. Each sub-
ject has 13 different poses, 43 different illuminations, and 4 different expressions. In
this paper, our dataset is composed of all the images from five near frontal poses
(C05, C07, C09, C27, C29) including all the illumination and expression variations
as in [7] [1]. There are 170 face images for each subject in our dataset. The images
are cropped by fixing two eyes, and the cropped image size is 32 × 32. No image pre-
processing is performed except normalizing the image into unit vector as in [7] [1].
Figure 2 shows some samples of one subject.

We randomly select 30 images from each subject for training, and the other 140
images of each subject for testing. The experiments are randomly run 50 times, and all
the results reported in Figure 3 are the average of 50 times experiments. Because there
are 68 classes, the maximum feature dimension of LDA is 68-1 = 67. From Figure 3,
we can see that MBC is better than PCA, LDA, RCA, NCA, and BFC. The minimum
classification error of MBC is 5.46%, while those of PCA, LDA, RCA, NCA, and BSF
are 29.4%, 7.84%, 14.62%, 6.76%, and 6.76% respectively. The performance of MBC
is still better than the modified LPP [7]. In [7] [1] , the modified LPP obtained the
minimum average classification error of 7.5% over 50 times experiments under the
same testing protocol, i.e., 30 images are randomly selected from each subject, and the
rest images of each subject are used for testing.



A Unified Framework of Subspace 257

Fig. 2. Samples of the CMU-PIE database

Fig. 3. Testing error rate on the CMU-PIE database

4.2 Extended YALE Face Database

The extended YALE face database has 38 subjects, each subjects has 64 near frontal
view images under different illuminations [1] [15]. The images are cropped to 32 ×
32, and images are normalized into unit vectors as in [7] [1]. Figure 4 shows some
image samples. Same as the experiments on the CMU-PIE database, we randomly select
30 images from each individual for training, and the rest 34 images per subject are
used for testing. The experiments are run 50 times, and Figure 5 reports their average
results. Because the training data has 38 classes, the maximum feature dimensions of
LDA is 38-1 = 37. The minimum classification error of MBC is 2.5%, while those of
PCA, LDA, RCA, NCA, and BSF are 25.59%, 13.34%, 10.88%, 4.93%, and 3.93%
respectively. The performance of MBC is still better than the modified LPP [7], for
the minimum classification error of the latter reported is 7.5% under a similar testing
in [7] [1].
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Fig. 4. Samples of the extended YALE database

Fig. 5. Results on the extended YALE database

5 Conclusions

In this paper, we presented a unified scheme of subspace and distance metric learning
under the Bayesian framework for face recognition. We divided the k-nearest neighbors
of each sample into the intra-person set and the inter-person set according to the local
distribution of the data, and we attempted to learn a distance metric in the embedding
subspace, which made the distances between the sample and its intra-person set smaller
than the distances between it and its inter-person set in the embedding subspace. To
reach this goal, we defined two variables in the subspace, i.e., the intra-person distance
and the inter-person distance, and modeled them with two different probabilistic distrib-
utions. Then we converted our problem to that of minimizing the overlap between these
two distributions. Inspired by Bayesian classification error estimation, Our goal was
equivalent to minimizing their Bhattachyrra coefficient measurement. The proposed
framework made no assumption on the global distribution of the data. Moreover, it links
to Bayesian error. We proved the power of the proposed approach on the CMU-PIE face
database and the extended YALE face database.
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Abstract. Pose variance remains a challenging problem for face recognition. In 
this paper, a scheme including image synthesis and recognition is proposed to 
improve the performance of automatic face recognition system. In the image 
synthesis part, a series of pose-variant images are produced based on three 
images respectively with front, left-profile, right-profile poses, and are added 
into the gallery in order to overcome the pose inconsistence between probes and 
images in the database. In the recognition part, a multi-level fusion method 
based on Gabor-combined features and gray-intensity features (GCGIF) is 
presented. Both amplitude features and phase features extracted through Gabor 
filters are utilized. Fusion is introduced in both the face representation level and 
the confidence level. Experiment results show that the integrated scheme 
achieve superior recognition performance. 

Keywords: Face recognition, face synthesis, pose variance, Gabor, fusion method. 

1   Introduction 

In the past few years, techniques on face recognition have been developed a lot. Many 
algorithms have achieved good recognition performance in controlled conditions that 
faces are in frontal poses, in harmonious illumination and in neutral expression. 
However, there are still many open problems when face recognition technology is put 
into application. The face recognition vender test (FRVT) 2002 reports [1] that 
recognition under illumination, expression and pose variations still remains 
challenging. Results show that recognition rate decreases sharply when one side for 
matching is a face rotated to a large angle and the other is a frontal face.  

Aiming to improve face recognition performance under pose variance, one way 
easily being thought of is to change the matching condition by adjusting face pose in 
one image the same with that of the other image for matching. Based on this idea, 
synthesizing face images in novel views is considered to be an important way and has 
been discussed by many researchers for a period.  

In the past few years, many methods of synthesizing face image in novel views 
have been proposed. One common way to synthesize novel views of a face is to 
recover its 3D structure. Some current algorithms utilize a morphable 3D model to 
generate face images novel views from a single image. W. Zhao et al. [2] proposed a 
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SFS (Shape from Shading)-based view synthesis technique to generate a frontal image 
from a profile image. It is also a single image based methods where no example based 
learning is carried out. These methods face to a problem in common: when only one 
face image is available, the texture within occluded region becomes undefined.  

Vetter et al. [3, 4] use the linear object class approach to deal with the problem. It 
is a hybrid method that needs multiple images per person for training and only one 
image in database per person is available in recognition. It is assumed that a new 
face’s texture can be represented as a linear combination of the texture from a group 
of example faces in the same view, and the combination coefficients can be used to 
synthesize the face image in another view. However, another difficulty appears. Since 
the generated texture is a linear combination of the textures in training database, some 
individual characteristic information would be lost, such as little scar, beauty spot, 
and so on. 

Besides the two categories of methods, another category of methods are multiple 
image based methods where multiple images of variant poses per person are available. 
To collect multiple images per person in the database directly by capturing is hardly 
carried out; however, with synthesis technique, we can generate multiple images 
through only one or a limited quantity of images. It is the method category that this 
paper adopted.  

The proposed work in this paper mainly aims to be applied to criminal 
identification. In the original criminal database, there are commonly three face images 
of every person who has a criminal history, respectively in the frontal pose, left 
profile pose and right profile pose. In our work, we utilize these three images to 
synthesize more images of the same person with different rotation angles. The 
synthesized images are then put into the database to increase the pose variety. In the 
recognition stage, when a probe comes, it is first estimated about its pose, and then 
compared with a sub-database selected according to the principle that images in the 
sub-database has the most similar pose with that of the probe.  

The synthesis work is carried on based on Stereopsis and projective geometry. 
Before synthesis, ASM algorithm is improved to ensure the accuracy of face 
alignment. 3D shape reconstruction and triangle-based cubic spline interpolation are 
introduced for generating the shape in new pose. Multi-resolution spline technique is 
adopted in texture synthesis. Proper integration of all these techniques results in 
satisfying synthesis performance which retains major characteristics of a face. 

Besides the synthesis work, this paper also studies the area of face recognition 
algorithm. Although the synthesis work has helped to adjust the pose of images in the 
database similar to that of the probe, another problem is left. That is, how to make the 
recognition algorithm robust for two profile image matching. Therefore, in this work, 
we tried to introduce Gabor wavelet feature since Gabor features have the properties 
of orientation selectivity, spatial frequency selectivity, and insensitivity in positioning 
error. At the same time, gray-intensity feature was discarded; instead, it was 
combined with Gabor features at different stage by trials. Finally, we present a two-
level fusion algorithm for recognition based on Gabor-amplitude features, Gabor-
phase features and Gray-Intensity features. This method combines the Gabor 
amplitude features and phase features in the PCA level to form Gabor-combined 
features, which are then joined with gray intensity features in the confidence level to 
form the final classifier. 
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Combining the synthesis work and the recognition work, this paper makes 
contributions in mainly three aspects:  

1. It generates multiple images in variant poses from three images per person 
and makes the images on sides for recognition have similar pose so that the 
recognition performance is improved. 

2. Since the synthesis is based on more than one image, the texture contained in 
the three original images can cover all area of the face so that individual 
details are retain; 

3. Since the synthesis is carried on aforehand before recognition, it brings no 
time problem for recognition, and thus the proposed scheme is suitable for 
real-time face identification applications. 

The rest of the paper is organized as follows: Section 2 provides an overview of the 
whole proposed scheme; Section 3 introduces major techniques in the proposed image 
synthesis course including face alignment, shape reconstruction, texture synthesis and 
pose estimation. Section 4 demonstrates the framework and the detail of the proposed 
two-level fusion recognition method based on multiple image features. Experiment 
results are given in Section 6, and this paper is concluded in section 7. 

2   Overview of the Proposed Scheme 

Aiming to solve the problem of recognizing an image with face pose in a large 
rotation angle, an integrated scheme is designed, which consists of two parts: database 
image synthesis part and face image recognition part. As shown in Fig.1, before 
recognition, synthesis work would be done based on three categories of databases, 
respectively with frontal poses, left-profile poses and right-profile poses. Through 
synthesis, the database will be enlarged by adding images with other poses. In 
therecognition stage, when a probe comes, the proposed system will first estimate its 
face pose and then pick out a sub-database whose images have the most similar pose 
with that of the probe. So the recognition work will carried on between the probe and 
 

 

Fig. 1. Overview of the whole scheme 
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the selected sub-database. Therefore, the most important work in this scheme is the 
synthesis stage and the recognition stage, both of which have crucial affect on the 
final recognition performance. 

3   Pose-Variant Face Image Synthesis 

This section gives an overview of the synthesis proposed in our scheme and introd- 
uces briefly the key techniques utilized for synthesis. 

3.1   Synthesis Framework 

Frontal, left-side and right-side face images are utilized together to produce images 
with any possible pose. These synthesized images then compose sub-datasets of the 
gallery, each of which represents a pose type. Fig.2 illustrates the whole synthesis 
process. Face alignment, new shape generation and new texture synthesis are crucial 
parts in the synthesis stage. 

 

Fig. 2. Framework of the synthesis stage 

3.2   Face Alignment 

An improved ASM (Active Shape Models) method is chosen to extract the face 
feature points in this paper. It is hard for the conventional ASM to get accurate result 
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on each feature point; what’s more, the performance depends heavily on the initial 
positions of the landmarks. According to the structure of face, the edge information 
and part information of face are introduced to the matching process of ASM, which 
improved the performance of ASM [5]. 

The face images are firstly normalized. Then the improved ASM algorithm help to 
extract 105 feature points to represent the front face shape and 57 feature points to 
represent the profile face shape respectively, as shown in Fig.3.  

 

Fig. 3. Feature points extracted by the improved ASM algorithm 

To ensure the corresponding relation between feature points in different images, 
feature points of some face parts like contour are connected and fitted by polynomial 
curve. As shown in Fig. 4, half of the contour is fitted at two stages. At the first stage 
shown in the left, feature points are roughly fitted and the point parallel to the corner 
of mouth is considered to be a subsection point. Then the contour is fitted separated 
by two curves as shown in the right. Then the contour feature points are adjusted on 
the curves in well-proportioned distribution. Besides fitting the contour, similar 
operations are also carried onto the other facial parts. The alignment of the face 
feature points provides an important basis for shape reconstruction of frontal face, 
which would be mentioned in the next section. 

 

Fig. 4. A two-stage fitting to the contour with polynomial curves 
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3.3   Shape Reconstruction 

One face image includes shape information and pure texture image. So a face image 
can be separated into shape information and texture information. If we have these two 
kinds of information, we can form a new face image. 

The 3D shape of a given face is reconstructed based on the aligned feature points 
extracted from the three source images. For each 3D point, its x and y coordinate 
values can be obtained from the frontal image and its z coordinate value can be 
obtained from either profile image, as shown in the Fig.5 below. 

 

Fig. 5. Demonstration of 3D shape reconstruction based on stereoscopy 

The 3D shape formed directly from the source images contains only 105 points, 
which are not enough for representing the face shape. So based on these sparse feature 
points, we introduce the triangle-based cubic spline interpolation technique [6][7][8] 
to generate dense regularly spaced grid, as shown in Fig.6.  

 

Fig. 6. Dense regularly spaced grid generation for representing face shape 

With the dense grid, we can generate the 2D face shape in new pose based on 
stereoscopy. Since some parts of the face would be occluded in the new pose, we need 
to compute the new edges of all face parts, especially the nose part and the contour part. 

3.4   Texture Synthesis 

As mentioned in Section. 1, one advantages of the proposed method in this paper is 
that there is enough information for texture synthesis. To make full use of the textures 
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Fig. 7. Image transform and multi-resolution mosaic 

of three source images, transform is carried on according to a set of principles as 
shown in Fig.7. Based on the curves marked in Fig.7, images in the first row is 
transformed to those in the second row, which are then cut and combined with the 
help of multi-resolution spline technique [9] to generate the mosaic image in right-
down corner. 

In order to generate the image in new pose, the new 2D shape points and their 
corresponding positions in the mosaic image are needed. Since in 3.4 we have already 
gained the new 2D shape points, we can also compute out their corresponding 
positions in the mosaic images by utilizing the relationship between 3D coordinates 
and 2D coordinates and all the parameters in the image transform and mosaic course.  

After the corresponding points are confirm, Delaunay triangularization following 
the same principle is introduced to form multiple triangles to connect the points. Then 
the triangle based affine transform is used to span the selected part of the mosaic face 
image to fit for the destination shape. Equation (1) describes this affine transform 
process.  

'

'
x

y

Ox a b x

Oy c d y

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  
(1) 

Fig.8 is an example of the affine transform for texture synthesis.  

 

Fig. 8. Process of affine transform for texture synthesis 
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3.5   Pose Estimation 

As shown in Fig.2, in order to select the sub-database whose images have the similar 
pose as the probe, the probe’s probe should be estimated. In this work, we require the 
input probe with a rotation angle no larger than 45°.The probe is first preprocessed 
such as feature-positioned and normalized. It is rectified and normalized 
geometrically according to the auto located key-point positions. In the geometric 
normalization step, not only the eyes but also the chin middle point would be 
automatically located. Then each face image would be scaled and rotated so that the 
eyes are positioned in line and the distance between the chin point and the center of 
the eyes equals a predefined length. After that, the face image is cropped to a given 
size. The examples of training images in TH database (built by ourselves) are shown 
in Fig.9. 

 

Fig. 9. The training face images in TH database 

It is essential to extract features from images utilizing the composite PCA 
(principle component analysis) and projecting face images to the eigenspace. Given a 
set of samples N

iX ∈R  represented face images by column vectors. The 
transformation matrix can be formed by using eigenvectors which normalized to unit 
matrix T .The projection of iX into the N-dimensional subspace can be expressed as 

{ }1, , T
N iX Tα α α= = ⋅L  (2) 

The shape feature is shown in Fig.10 in next page. The feature points can give 
geometric characteristic. AB and ' 'A B  are the distance between two eyes when pose 
angle is 0 and β  degree respectively. Set radius as 1. 

' ' ' ' sin( ) sin( )A E A B θ β θ β= = + + − 2sin cosθ β=  (3) 

Since distance 2sinAB θ= , then pose angle 

' '

arccos( )
A E

AB
β =  (4) 

Set weights of two weight parameters α and β  after two groups of features are 
gained. The new eigenvector ξ  is 

 p qξ α β= ⋅ + ⋅  , where 1p q+ =    (5) 
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Fig. 10. Shape feature points and the configuration of pose variance 

SVM (support vector machine) is to find the optimal linear hyperplane which the 
expected classification error for unseen test samples is minimized [10]. According to 
the structural risk minimization principle, a function that classifies the training data 
accurately will generalize best regardless of the dimensionality of the input space. 

Each training sample ix is associated with coefficient ia .Those samples whose 
coefficient ia is nonzero are Support Vectors (SV) of the optimal hyperplane. ( )f x  is 
an optimal SVM classified function. ( 1, 1)iy ∈ + − . 

vector

( ) ( , )i i if x y a K x x b= +∑  
(6) 

where K  is a kernel function. Here we use linear kernel, ( )i ix xφ = , then 
( , ) T

i j i j i jK x x x x x x= ⋅ = . 
The PCA projection values of samples to eigenspace were as SVM input 

parameters and the optimal hyperplane that correctly separates data points were 
found. Combining the PCA and SVM classifier, we can draw better classification 
results. Then the pose angle will be acquired. 

4   Multi-level Multi-feature Fusion Method 

This section introduces the recognition algorithm proposed in our work, which is a 
two-level fusion method based on three types of image features. 

4.1   Fusion Framework 

Three types of face representations are introduced in this method, including gray-level 
intensity features, Gabor amplitude features and Gabor phase features. Fig.11 
illustrates the process of feature extraction and the design of two-level fusion. In the 
PCA level, shown in the left gray frame, we make a fusion between Gabor amplitude 
features and phase features. These two features are then treated as a whole in the later 
steps. Another fusion is introduced in the confidence level between the matching 
result based on Gabor-combined features and that based on gray intensity features, as 
shown in the right gray frame. This two-level fusion method based on Gabor-
combined features and gray-intensity features is called GCGIF method in the 
subsequent part of this paper. 
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Fig. 11. Design of the proposed method GCGIF 

4.2   Feature Extraction 

Extracting Gray-level Intensity Feature: Face images are rectified and normalized 
geometrically according to the auto located key-point positions, as mentioned in Section 
3.5. After these processes, the face image is cropped to a given size (90*120). To reduce 
the affection of different hairstyles and backgrounds, a mask is put on the face image. 
Moreover, histogram equalization is introduced to decrease the influence from light and 
complexion variation. The preprocessing procedure is shown in Fig.12 (a). 

 

Fig. 12. (a) formation of gray intensity feature; (b) examples of Gabor amplitude features and 
phase features 

Extracting Gabor Features: Gabor wavelet has been introduced to image analysis 
due to its biological relevance and its ability in representing spatial locality and 
orientation. In our experiments, we consider both Gabor amplitude and phase for face 
image representation. 

The 2D Gabor wavelet components can be defined as equations (7) and (8):  

( ) ( ) ( ) ( ){ }2 2 2 2 2
0 0,

exp / 2 cos exp / 2 /
k

G r k k r r k r rδ δ δ+
⎡ ⎤= − − − − −⎣ ⎦v
vv v v v v

 (7) 

( )22 2 2 2
0 0,

( ) exp / 2 sin ( ) /
k

G r k k r r k r rδ δ−
⎡ ⎤= − − −⎣ ⎦v
vv v v v v

 (8) 

where exp( )vk k jθ=
v

, max / uk k λ= , /v v nθ π= . 
Here k

v
 is the filter wave-vector, determines the spatial frequency and orientation 

tuning of the filter. If 8n = , { }0,1,2,3,4u ∈ , { }0,1, ,7v ∈ L , δ π= , max / 2k π= , 
and 2λ = , a family of Gabor filters with 5 scales and 8 orientations are generated. 
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When a gray-intensity image is convolved with these Gabor filters, responses of the 
filters would be combined into a vector, with components given below: 

0 0, ,
( ) ( , ) ( )

k k
R r G r r I r dr± ±

= ∫v v
v v v v v

 (9) 

where I represents the input gray intensity image.  
Then Gabor amplitude features and phase features of the corresponding face image 

could be computed as follows: 

2 2
, ,k k k

R R R+ −= +v v v ,  
, ,

arctan( / )
k k k

R Rψ − +=v v v  (10) 

Fig.12(b) gives examples of outputs from Gabor filters, with amplitude features in 
the first row and the corresponding phase features in the second row, both are at the 
condition of 2u = .  

The Gabor wavelet transform of an image is the collection of the coefficients of all 
the pixels (90*120). To reduce the dimensionality, the pixels are sampled to 24*32. 
To further reduce the redundancy of features, PCA (Principle Component 
Analysis)[11] and LDA (Linear Discriminant Analysis)[12] are employed. 

4.3   Selection of Fusion Mechanism 

We study fusion mechanism at both the representation level and the confidence level, 
as shown in Fig.13 and Fig.14. 

 

Fig. 13. Feature fusion at the PCA level 

 

Fig. 14. Feature fusion in the confidence level 

At the representation level, vectors extracted by PCA from different kinds of 
features are combined firstly. Then the combined vector enters LDA. At last, the 
feature vector obtained by LDA is the final representation for the face image and 
would be used for matching before the final decision. 

The mechanism of confidence-level fusion works as shown in Fig.14. Different 
features are first processed by PCA and LDA and the LDA results are used for 
matching respectively. Then different feature-matching results are calculated into 
final similar-scores based on the weighted sum rule.  

Both the above fusion mechanisms may help improve the recognition task. Which 
mechanism should be utilized is decided through experiment trials here. 
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Table 1. Recognition performance without fusion 

Without Fusion 
Gabor-Amplitude 

PCA-LDA 
Gabor-Phase PCA-

LDA 
Gray-Intensity 

PCA-LDA 
Recognition Rate 70.0% 63.8% 67.8% 

Table 2. Recognition performance with different fusion manners 

Features for Fusion 
Feature1 Feature2 

Fusion Level Recognition Rate 

Gabor-Amplitude Gabor-Phase PCA 74.5% 

Gabor- Amplitude Gabor-Phase 
Confidence 
(α : β = 5:2) 

72.3% 

Gabor-Combined Gray-Intensity PCA 78.4% 

Gabor-Combined Gray-Intensity 
Confidence 
(α : β = 3:2) 81.9% 

 
Face recognition performance is evaluated based on part of the TH-database [13]. 

The gallery consists of images of 160 people with one frontal image per person. The 
probe dataset consists of 320 images whose left-right rotation angle is either -15 or 
+15 degree. The recognition rate means the fraction of probes that have rank top fifth 
in the identification task. Table.1 shows the recognition performance based on each 
type of features without fusion.  

Table.2 compares the performance of different fusion mechanisms. Comparing 
with Table.1, it is obvious that fusions of features do help to improve the recognition 
performance. Due to greater correlation between Gabor amplitude and phase features, 
we first consider making fusion between them. The upper part of Table.2 shows that 
combing Gabor amplitude and phase features in PCA level outgoes that in confidence 
level, so the former is adopted to form the Gabor-combined features. Then the nether 
part of Table.2 shows that further fusion between Gabor-combined feature and gray-
intensity feature in the confidence level is better and should be adopted. The reason 
behind the results may be that features with more inherent relativity, just like 
amplitude feature and phase feature both extracted by Gabor filters, adapts to fusion 
at an earlier stage. 

According to results in Table.2, the fusion mechanism for GCGIF algorithm was 
formed as Fig.11 illuminated. Several classic algorithms are also evaluated in our 
experiments, including the PCA algorithm, the combined PCA and LDA algorithm 
(PCA+LDA) --both based on gray intensity features-- and the PCA+LDA algorithm 
based on Gabor amplitude features (G PCA+LDA). A previously released fusion 
algorithm MMP-PCA (Multi-Modal Part face recognition method based on Principal 
Component Analysis) [14], is also tested for reference. Table.3 shows that GCGIF 
delivers the best result in the above mentioned experiment condition.  

Table 3. Recognition performance of different methods 

Methods PCA–LDA G PCA-LDA MMP-PCA GCGIF 
Recognition Rate 67.8% 70.0% 76.3% 81.9% 
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5   Experiment Results 

In this section we describe our experiments on the TH face database. The TH face 
database contains face images of 160 persons with left-right rotation angles from -90 
degree to +90 degree in the interval of 15 degree. We select the frontal, left-profile, 
right-profile images as original gallery and select images from -45 degree to 45 
degree in the interval of 15 degree to form probe sets. Images in every probe set have 
the same face pose.  

In our experiment, the frontal, left-profile, right-profile images are first utilized to 
synthesize multiple face images with left-right rotation angles from -45 degree to +45 
degree in interval of 5 degree, through the proposed synthesis framework introduced 
in Section.3. The synthesized images then constitute multiple sub-databases, each of 
which represents an individual pose.  

Fig.15 gives two examples of face synthesis based on three images. For each 
person, the first row are original images with frontal, left-profile and right-profile 
poses; the following two rows are the synthetic face images with poses from -45 
degree to 45 degree at an interval of 5degree. 

 
 

 

Fig. 15. Examples of the face synthesis results 
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The recognition experiments are based on an identification task. Recognition rate is 
tested on each probe set. The recognition rate means the fraction of probes that have 
rank top fifth in the identification task. The recognition algorithm adopted the GCGIF 
algorithm presented in Section 5. To better evaluate the proposed scheme in this 
paper, we compare the recognition performances in database with synthesized images 
and in database without synthesized image. In both the situations, the gallery consists 
of images of 160 people and each probe set contains 160 face images. The experiment 
results are shown in Table. 4.  

Table 4. Recognition performance in the original gallery and that in the synthetic gallery 

Probe 
(Pose) 

Recognition rate in the database 
containing only frontal, left-
profile, right-profile images 

Recognition rate in the database 
containing frontal, left-profile, 
right-profile images and also 

synthesized images 
L 15 81.3% 85.0% 
L 30 58.1% 75.6 % 
L 45 29.4% 54.4% 
R 15 81.9% 86.3% 
R 30 56.9% 75.0% 
R 45 25.6% 55.6% 

 
Table. 4 shows the recognition performance of different probe sets. In Table.4, “L 

xx” means the images in the set has a face pose with xx degree’s rotation to its left. 
Similarly, “R” means “Right”. From Table.4, we can see that the recognition rates in 
the third column are much higher than the second column in the same row, which 
indicates that the synthesis of pose-variant images for the database did help to 
improve the recognition performance significantly. 

6   Conclusions 

In this paper, we design an integrated scheme for pose-variant face recognition. There 
are mainly two contributions.  

First, Synthesis is introduced to produce a series of pose-variant face images based 
on three images with frontal, left-profile and right-profile poses respectively in order 
to overcome the difficulty of image matching between faces with inconsistent poses. 
The generated images are then added to the gallery to increase the pose variety of 
each individual before the recognition work. In the recognition stage, when a probe 
comes, it will first be estimated about its pose and then be compared with images in a 
sub-dataset with the most similar pose. Since the synthesis is processed before the 
recognition work, the recognition speed has not been affected. Although a small 
quantity of unavoidable estimation and alignment errors may affect the final 
reconstruction accuracy, experiment results show that most of the information 
important for recognition has been retained and helps to improve the recognition 
performance. 
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Secondly, a two-level fusion algorithm for face recognition based on Gabor-
Combined features and Gray-Intensity features, GCGIF, is presented in order to 
improve the recognition performance. This method combines the Gabor amplitude 
features and phase features in the PCA level to form Gabor-combined features, which 
are then joined with gray intensity features in the confidence level. This two-level 
fusion mechanism is selected through experimental trials and rational conjecture on 
correlation between features. Experimental results show that GCGIF achieves 
superior performance.  

Due to these two contributions, experiments show that the proposed scheme 
achieves great improvement for pose-variant face recognition. Without expensive 
time cost, this method is suitable for real-time identification applications. 
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Abstract. A key problem for “face in the crowd” recognition from
existing surveillance cameras in public spaces (such as mass transit
centres) is the issue of pose mismatches between probe and gallery
faces. In addition to accuracy, scalability is also important, necessarily
limiting the complexity of face classification algorithms. In this paper
we evaluate recent approaches to the recognition of faces at relatively
large pose angles from a gallery of frontal images and propose novel
adaptations as well as modifications. Specifically, we compare and
contrast the accuracy, robustness and speed of an Active Appearance
Model (AAM) based method (where realistic frontal faces are synthesized
from non-frontal probe faces) against bag-of-features methods (which are
local feature approaches based on block Discrete Cosine Transforms and
Gaussian Mixture Models). We show a novel approach where the AAM
based technique is sped up by directly obtaining pose-robust features,
allowing the omission of the computationally expensive and artefact
producing image synthesis step. Additionally, we adapt a histogram-based
bag-of-features technique to face classification and contrast its properties
to a previously proposed direct bag-of-features method. We also show
that the two bag-of-features approaches can be considerably sped
up, without a loss in classification accuracy, via an approximation
of the exponential function. Experiments on the FERET and PIE
databases suggest that the bag-of-features techniques generally attain
better performance, with significantly lower computational loads. The
histogram-based bag-of-features technique is capable of achieving an
average recognition accuracy of 89% for pose angles of around 25 degrees.

1 Introduction

In the 21st century, international usage and interest in Closed-Circuit Television
(CCTV) for surveillance of public spaces is growing at an unprecedented pace
in response to global terrorism. A similar escalation of the installed CCTV base
occurred in London late last century in response to the continual bombings linked
to the conflict in Northern Ireland. Based on the number of CCTV cameras on
Putney High Street, it is “guesstimated” [1] that there are around 500,000 CCTV
cameras in the London area and 4,000,000 cameras in the UK. This suggests that
in the UK there is approximately one camera for every 14 people. However, whilst
it is relatively easy, albeit expensive, to install increasing numbers of cameras, it
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is quite another issue to adequately monitor the video feeds with security guards.
Hence, the trend has been to record the CCTV feeds without monitoring and to
use the video merely for a forensic, or reactive, response to crime and terrorism,
often detected by other means.

In minor crimes such as assault and robbery, surveillance video is very effective
in helping to find and successfully prosecute perpetrators. Thus one would
expect that surveillance video would act as a deterrent to crime. Recently the
immense cost of successful terrorist attacks on soft targets such as mass transport
systems has indicated that forensic analysis of video after the event is simply not
adequate. Indeed, in the case of suicide bombings there is simply no possibility
of prosecution after the event and thus no deterrent effect. A pressing need is
emerging to monitor all surveillance cameras in an attempt to detect events and
persons-of-interest.

The problem is that human monitoring requires a large number of personnel,
resulting in high ongoing costs and questionable reliability due to the attention
span of humans decreasing rapidly when performing such tedious tasks. A
solution may be found in advanced surveillance systems employing computer
monitoring of all video feeds, delivering the alerts to human responders for
triage. Indeed such systems may assist in maintaining the high level of vigilance
required over many years to detect the rare events associated with terrorism — a
well-designed computer system is never caught “off guard”. A key technology for
prevention of crime and terrorism is the reliable detection of persons-of-interest
through face recognition.

While automatic face recognition of cooperative subjects has achieved good
results in controlled applications such as passport control, CCTV conditions are
considerably more challenging. Nuisance factors such as varying illumination,
expression, and pose can greatly affect recognition performance. According to
Phillips et al. head pose is believed to be the hardest factor to model [2]. In
mass transport systems, surveillance cameras are often mounted in the ceiling
in places such as railway platforms and passenger trains. Since the subjects are
generally not posing for the camera, it is rare to obtain a true frontal face image.
As it is infeasible to consider remounting all the cameras (in our case more than
6000) to improve face recognition performance, any practical system must have
effective pose compensation or be specifically designed to handle pose variations.
Examples of real life CCTV conditions are shown in Figure 1.

A further complication is that we generally only have one frontal gallery
image of each person of interest (e.g. a passport photograph or a mugshot).
In addition to robustness and accuracy, scalability and fast performance are also
of prime importance for surveillance. A face recognition system should be able
to handle large volumes of people (e.g. peak hour at a railway station), possibly
processing hundreds of video streams. While it is possible to setup elaborate
parallel computation machines, there are always cost considerations limiting the
number of CPUs available for processing. In this context, a face recognition
algorithm should be able to run in real-time or better, which necessarily limits
complexity.
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Previous approaches to addressing pose variation include the synthesis of
new images at previously unseen views [3,4], direct synthesis of face model
parameters [5] and local feature based representations [6,7,8]. We note in passing
that while true 3D based approaches in theory allow face matching at various
poses, current 3D sensing hardware has too many limitations [9], including cost
and range. Moreover unlike 2D recognition, 3D technology cannot be retrofitted
to existing surveillance systems.

In [4], Active Appearance Models (AAMs) were used to model each face,
detecting the pose through a correlation model. A frontal image could then
be synthesized directly from a single non-frontal image without the need to
explicitly generate a 3D head model. While the AAM-based face synthesis
allowed considerable improvements in recognition accuracy, the synthesized faces
have residual artefacts which may affect recognition performance.

In [5], a “bag of features” approach was shown to perform well in the presence
of pose variations. It is based on dividing the face into overlapping uniform-sized
blocks, analysing each block with the Discrete Cosine Transform (DCT) and
modelling the resultant set of features via a Gaussian Mixture Model (GMM).
The robustness to pose change was attributed to an effective insensitivity to the
topology of the face. We shall refer to this method as the direct bag-of-features.

Inspired by text classification techniques from the fields of natural language
processing and information retrieval, alternative forms of the “bag of features”
approach are used for image categorisation in [10,11,12]. Rather than directly
calculating the likelihood as in [5], histograms of occurrences of “visual words”
(also known as “keypoints”) are first built, followed by histogram comparison.
We shall refer to this approach as the histogram-based bag-of-features.

This paper has four main aims: (i) To evaluate the effectiveness of a novel
modification of the AAM-based method, where we explicitly remove the effect of
pose from the face model, creating pose-robust features. The modification allows
the use of the model’s parameters directly for classification, thereby skipping
the computationally intensive and artefact producing image synthesis step.
(ii) To adapt the histogram-based bag-of-features approach to face classification
and contrast its properties to the direct bag-of-features method. (iii) To

Fig. 1. Examples of typical non-frontality of faces in surveillance conditions
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evaluate the extent of speedup possible in both bag-of-features approaches via
an approximation of the exp() function, and whether such approximation
affects recognition accuracy. (iv) To compare the performance, robustness and
speed of AAM based and bag-of-features based methods in the context of face
classification under pose variations.

As we are currently in the process of creating a suitable dataset for
face classification in CCTV conditions (part of a separately funded project),
the experiments reported in this paper instead use the FERET and PIE
datasets [13,14].

The paper is structured as follows. In Section 2 we overview the AAM-based
synthesis technique and present the modified form. In Section 3 we overview
the two bag-of-features methods. Section 4 is devoted to an evaluation of the
techniques on the FERET and PIE datasets. Concluding remarks and further
avenues of research are given in Section 5.

2 ASMs and AAMs

In this section we describe face modelling based on deformable models
popularised by Cootes et al., namely Active Shape Models (ASMs) [15] and
Active Appearance Models (AAMs) [16]. We first provide a brief description of
the two models, followed by pose estimation via a correlation model and finally
frontal view synthesis. We also show that the synthesis step can be omitted by
directly removing the effect of the pose from the model of the face, resulting in
(theoretically) pose independent features.

2.1 Face Modelling

Let us describe a face by a set of N landmark points, where the location of
each point is tuple (x, y). A face can hence be represented by a 2N dimensional
vector:

f = [ x1, x2, · · · , xN , y1, y2, · · · , yN ]T . (1)

In ASM, a face shape is represented by:

f = f + Psbs (2)

where f is the mean face vector, Ps is a matrix containing the k eigenvectors
with largest eigenvalues (of a training dataset), and bs is a weight vector. In a
similar manner, the texture variations can be represented by:

g = g + Pgbg (3)

where g is the mean appearance vector, Pg is a matrix describing the
texture variations learned from training sets, and bg is the texture weighting
vector.
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The shape and appearance parameters bs and bg can be used to describe the
shape and appearance of any face. As there are correlations between the shape
and appearance of the same person, let us first represent both aspects as:

b =
[
Wsbs

bg

]
=

[
WsPT

s (f − f )
PT

g (g − g)

]
(4)

where Ws is a diagonal matrix which represents the change between shape and
texture. Through Principal Component Analysis (PCA) [17] we can represent
b as:

b = Pcc (5)

where Pc are eigenvectors, c is a vector of appearance parameters controlling
both shape and texture of the model, and b can be shown to have zero mean.
Shape f and texture g can then be represented by:

f = f + Qsc (6)
g = g + Qgc (7)

where

Qs = PsW−1
s Pcs (8)

Qg = PgPcg (9)

In the above, Qs and Qg are matrices describing the shape and texture
variations, while Pcs and Pcg are shape and texture components of Pc

respectively, i.e.:

Pc =
[
Pcs

Pcg

]
(10)

The process of “interpretation” of faces is hence comprised of finding a set of
model parameters which contain information about the shape, orientation, scale,
position, and texture.

2.2 Pose Estimation

Following [18], let us assume that the model parameter c is approximately related
to the viewing angle, θ, by a correlation model:

c ≈ c0 + cc cos(θ) + cs sin(θ) (11)

where c0, cc and cs are vectors which are learned from the training data. (Here
we consider only head turning. Head nodding can be dealt with in a similar
way).

For each face from a training set Ω, indicated by superscript [i] with
associated pose θ[i], we perform an AAM search to find the best fitting model
parameters c[i]. The parameters c0, cc and cs can be learned via regression
from

�
c[i]
�

i∈1,··· ,|Ω|
and

��
1, cos(θ[i]), sin(θ[i])

��
i∈1,··· ,|Ω|

, where |Ω| indicates the

cardinality of Ω.
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Given a new face image with parameters c[new ], we can estimate its orientation
as follows. We first rearrange c[new ] = c0 + cc cos(θ[new ]) + cs sin(θ[new ]) to:

c[new ] − c0 = [ cc cs ]
[

cos(θ[new ]) sin(θ[new ])
]T

. (12)

Let R−1
c be the left pseudo-inverse of the matrix [ cc cs ]. Eqn. (12) can then

be rewritten as:

R−1
c

(
c[new ] − c0

)
=

[
cos(θ[new ]) sin(θ[new ])

]T

. (13)

Let [ xα yα ] = R−1
c

(
c[new ] − c0

)
. Then the best estimate of the orientation is

θ[new ] = tan−1 (yα/xα). Note that the estimation of θ[new ] may not be accurate
due to land mark annotation errors or regression learning errors.

2.3 Frontal View Synthesis

After the estimation of θ[new ], we can use the model to synthesize frontal face
views. Let cres be the residual vector which is not explained by the correlation
model:

cres = c[new ] −
(
c0 + cc cos(θ[new ]) + cs sin(θ[new ])

)
(14)

To reconstruct at an alternate angle, θ[alt], we can add the residual vector to the
mean face for that angle:

c[alt ] = cres +
(
c0 + cc cos(θ[alt]) + cs sin(θ[alt ])

)
(15)

To synthesize the frontal view face, θ[alt ] is set to zero. Eqn. (15) hence simplifies
to:

c[alt ] = cres + c0 + cc (16)

Based on Eqns. (6) and (7), the shape and texture for the frontal view can then
be calculated by:

f [alt] = f + Qsc[alt ] (17)
g[alt] = g + Qgc[alt ] (18)

Examples of synthesized faces are shown in Fig. 2. Each synthesized face can then
be processed via the standard Principal Component Analysis (PCA) technique
to produce features which are used for classification [4].

2.4 Direct Pose-Robust Features

The bracketed term in Eqn. (14) can be interpreted as the mean face for angle
θ[new ]. The difference between c[new ] (which represents the given face at the
estimated angle θ[new ]) and the bracketed term can hence be interpreted as
removing the effect of the angle, resulting in a (theoretically) pose independent
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Fig. 2. Top row: frontal view and its AAM-based synthesized representation. Bottom
row: non-frontal view as well as its AAM-based synthesized representation at its original
angle and θ[alt] = 0 (i.e. synthesized frontal view).

representation. As such, cres can be used directly for classification, providing
considerable computational savings — the process of face synthesis and PCA
feature extraction is omitted. Because of this, we’re avoiding the introduction of
imaging artefacts (due to synthesis) and information loss caused by PCA-based
feature extraction. As such, the pose-robust features should represent the faces
more accurately, leading to better discrimination performance. We shall refer to
this approach as the pose-robust features method.

3 Bag-of-Features Approaches

In this section we describe two local feature based approaches, with both
approaches sharing a block based feature extraction method summarised in
Section 3.1. Both methods use Gaussian Mixture Models (GMMs) to model
distributions of features, but they differ in how the GMMs are applied. In the
first approach (direct bag-of-features, Section 3.2) the likelihood of a given face
belonging to a specific person is calculated directly using that person’s model.
In the second approach (histogram-based bag-of-features, Section 3.3), a generic
model (not specific to any person), representing “face words”, is used to build
histograms which are then compared for recognition purposes. In Section 3.4 we
describe how both techniques can be sped up.

3.1 Feature Extraction and Illumination Normalisation

The face is described as a set of feature vectors, X = {x1,x2, · · · ,xN}, which are
obtained by dividing the face into small, uniformly sized, overlapping blocks and
decomposing each block1 via the 2D DCT [21]. Typically the first 15 to 21 DCT
coefficients are retained (as they contain the vast majority of discriminatory

1 While in this work we used the 2D DCT for describing each block (or patch), it is
possible to use other descriptors, for example SIFT [19] or Gabor wavelets [20].
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information), except for the 0-th coefficient which is the most affected by
illumination changes [6].

To achieve enhanced robustness to illumination variations, we have
incorporated additional processing prior to 2D DCT decomposition. Assuming
the illumination model for each pixel to be p̂(x,y) = b+c·p(x,y), where p(x,y) is the
“uncorrupted” pixel at location (x, y), b is a bias and c a multiplier (indicating
the contrast), removing the 0-th DCT coefficient only corrects for the bias. To
achieve robustness to contrast variations, the set of pixels within each block is
normalised to have zero mean and unit variance.

3.2 Bag-of-Features with Direct Likelihood Evaluation

By assuming the vectors are independent and identically distributed (i.i.d.), the
likelihood of X belonging to person i is found with:

P (X|λ[i]) =
N�

n=1

P (xn|λ[i]) =
N�

n=1

G�
g=1

w[i]
g N

�
xn|μ[i]

g , Σ[i]
g

�
(19)

where N (x|μ,Σ) = (2π)-
d
2 |Σ|− 1

2 exp
�
− 1

2 (x − μ)T Σ-1(x − μ)
�

is a multi-variate
Gaussian function [17], while λ[i] = {w

[i]
g , μ

[i]
g ,Σ[i]

g }G
g=1 is the set of parameters

for person i. The convex combination of Gaussians, with mixing coefficients wg,
is typically referred to as a Gaussian Mixture Model (GMM). Its parameters are
optimised via the Expectation Maximisation algorithm [17].

Due to the vectors being treated as i.i.d., information about the topology
of the face is in effect lost. While at first this may seem counter-productive,
the loss of topology in conjunction with overlapping blocks provides a useful
characteristic: the precise location of face parts is no longer required. Previous
research has suggested that the method is effective for face classification while
being robust to imperfect face detection as well as a certain amount of in-plane
and out-of-plane rotations [6,22,5].

The robustness to pose variations can be attributed to the explicit allowance
for movement of face areas, when comparing face images of a particular person
at various poses. Furthermore, significant changes of a particular face component
(e.g. the nose) due to pose variations affect only the subset of face areas that
cover this particular component.

3.3 Bag-of-Features with Histogram Matching

The technique presented in this section is an adaption of the “visual words”
method used in image categorisation [10,11,12]. First, a training set of faces is
used to build a generic model (not specific to any person). This generic model
represents a dictionary of “face words” — the mean of each Gaussian can be
thought of as a particular “face word”. Once a set of feature vectors for a given
face is obtained, a probabilistic histogram of the occurrences of the “face words”
is built:
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hX =
1
N

[
N∑

i=1

w1p1 (xi)∑G
g=1 wgpg (xi)

,

N∑

i=1

w2p2 (xi)∑G
g=1 wgpg (xi)

, · · · ,

N∑

i=1

wGpG (xi)∑G
g=1 wgpg (xi)

]

where wg is the weight for Gaussian g and pg (x) is the probability of vector x
according to Gaussian g.

Comparison of two faces is then accomplished by comparing their
corresponding histograms. This can be done by the so-called χ2 distance
metric [23], or the simpler approach of summation of absolute differences [24]:

d (hA, hB) =
∑G

g=1

∣∣∣h[g]
A − h

[g]
B

∣∣∣ (20)

where h
[g]
A is the g-th element of hA. As preliminary experiments suggested that

there was little difference in performance between the two metrics, we’ve elected
to use the latter one.

Note that like in the direct method presented in the previous section,
information about the topology of the face is lost. However, the direct
method requires that the set of features from a given probe face is processed
using all models of the persons in the gallery. As such, the amount of
processing can quickly become prohibitive as the gallery grows2. In contrast, the
histogram-based approach requires the set of features to be processed using only
one model, potentially providing savings in terms of storage and computational
effort.

Another advantage of the histogram-based approach is that the face similarity
measurement, via Eqn. (20), is symmetric. This is not the case for the direct
approach, as the representation of probe and gallery faces differs — a probe
face is represented by a set of features, while a gallery face is represented by
a model of features (the model, in this case, can be thought of as a compact
approximation of the set of features from the gallery face).

3.4 Speedup Via Approximation

In practice the time taken by the 2D DCT feature extraction stage is negligible
and hence the bulk of processing in the above two approaches is heavily
concentrated in the evaluation of the exp() function. As such, a considerable
speedup can be achieved through the use of a fast approximation of this
function [25]. A brief overview follows: rather than using a lookup table,
the approximation is accomplished by exploiting the structure and encoding
of a standard (IEEE-754) floating-point representation. The given argument
is transformed and injected as an integer into the first 32 bits of the 64
bit representation. Reading the resulting floating point number provides the
approximation. Experiments in Section 4 indicate that the approximation does
not affect recognition accuracy.
2 For example, assuming each model has 32 Gaussians, going through a gallery of

1000 people would require evaluating 32000 Gaussians. Assuming 784 vectors are
extracted from each face, the number of exp() evaluations is around 25 million.
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4 Experiments

As mentioned in the introduction, we are currently in the process of creating
a suitable dataset for face classification in CCTV conditions. As such, in these
experiments we instead used subsets of the PIE dataset [14] (using faces at
−22.5o, 0o and +22.5o) as well as the FERET dataset [13] (using faces at −25o,
−15o, 0o, +15o and +25o).

To train the AAM based approach, we first pooled face images from 40
FERET individuals at −15o, 0o, +15o. Each face image was labelled with 58
points around the salient features (the eyes, mouth, nose, eyebrows and chin).
The resulting model was used to automatically find the facial features (via
an AAM search) for the remainder of the FERET subset. A new dataset was
formed, consisting of 305 images from 61 persons with successful AAM search
results. This dataset was used to train the correlation model and evaluate the
performances of all presented algorithms. In a similar manner, a new dataset
was formed from the PIE subset, consisting of images for 53 persons.

For the synthesis based approach, the last stage (PCA based feature
extraction from synthesized images) produced 36 dimensional vectors. The PCA
subsystem was trained as per [4]. The pose-robust features approach produced
43 dimensional vectors for each face. For both of the AAM-based techniques,
Mahalanobis distance was used for classification [17].

For the bag-of-features approaches, in a similar manner to [5], we used face
images with a size of 64×64 pixels, blocks with a size of 8×8 pixels and an overlap
of 6 pixels. This resulted in 784 feature vectors per face. The number of retained
DCT coefficients was set to 15 (resulting in 14 dimensional feature vectors, as
the 0-th coefficient was discarded). The faces were normalised in size so that the
distance between the eyes was 32 pixels and the eyes were in approximately the
same positions in all images.

For the direct bag-of-features approach, the number of Gaussians per model
was set to 32. Preliminary experiments indicated that accuracy for faces at
around 25o peaked at 32 Gaussians, while using more than 32 Gaussians provided
little gain in accuracy at the expense of longer processing times.

For the histogram-based bag-of-features method, the number of Gaussians
for the generic model was set to 1024, following the same reasoning as above.
The generic model (representing “face words”) was trained on FERET ba data
(frontal faces), excluding the 61 persons described earlier.

Tables 1 and 2 show the recognition rates on the FERET and PIE
datasets, respectively. The AAM-derived pose-robust features approach obtains
performance which is considerably better than the circuitous approach based
on image synthesis. However, the two bag-of-features methods generally obtain
better performance on both FERET and PIE, with the histogram-based
approach obtaining the best overall performance. Averaging across the high
pose angles (±25o on FERET and ±22.5o on PIE), the histogram-based method
achieves an average accuracy of 89%.

Table 3 shows the time taken to classify one probe face by the presented
techniques (except for PCA). The experiments were performed on a Pentium-M
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Table 1. Recognition performance on the FERET pose subset

Method
Pose

−25o −15o +15o +25o

PCA 23.0 54.0 49.0 36.0

Synthesis + PCA 50.0 71.0 67.4 42.0

pose-robust features 85.6 88.2 88.1 66.8

Direct bag-of-features 83.6 93.4 100.0 72.1

Histogram bag-of-features 83.6 100.0 96.7 73.7

Table 2. Recognition performance on PIE

Method
Pose

−22.5o +22.5o

PCA 13.0 8.0

Synthesis + PCA 60.0 56.0

pose-robust features 83.3 80.6

Direct bag-of-features 100.0 90.6

Histogram bag-of-features 100.0 100.0

machine running at 1.5 GHz. All methods were implemented in C++. The time
taken is divided into two components: (1) one-off cost per probe face, and (2)
comparison of one probe face with one gallery face.

The one-off cost is the time required to convert a given face into a format which
will be used for matching. For the synthesis approach this involves an AAM
search, image synthesis and PCA based feature extraction. For the pose-robust
features method, in contrast, this effectively involves only an AAM search. For
the bag-of-features approaches, the one-off cost is the 2D DCT feature extraction,
with the histogram-based approach additionally requiring the generation of the
“face words” histogram.

The second component, for the case of the direct bag-of-features method,
involves calculating the likelihood using Eqn. (19), while for the histogram-based
approach this involves just the sum of absolute differences between two
histograms (Eqn. (20)). For the two AAM-based methods, the second component
is the time taken to evaluate the Mahalanobis distance.

As expected, the pose-robust features approach has a speed advantage over
the synthesis based approach, being about 50% faster. However, both of the
bag-of-features methods are many times faster, in terms of the first component
— the histogram-based approach is about 7 times faster than the pose-robust
features method. While the one-off cost for the direct bag-of-features approach
is much lower than for the histogram-based method, the time required for the
second component (comparison of faces after conversion) is considerably higher,
and might be a limiting factor when dealing with a large set of gallery faces (i.e.
a scalability issue).
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Table 3. Average time taken for two stages of processing: (1) conversion of a probe face
from image to format used for matching (one-off cost per probe face), (2) comparison
of one probe face with one gallery face, after conversion.

Method
Approximate time taken (sec)

One-off cost Comparison of one probe
per probe face face with one gallery face

Synthesis + PCA 1.493 < 0.001

pose-robust features 0.978 < 0.001

Direct bag-of-features 0.006 0.006

Histogram bag-of-features 0.141 < 0.001

When using the fast approximation of the exp() function, the time required
by the histogram-based method (in the first component) is reduced by
approximately 30% to 0.096, with no loss in recognition accuracy. This makes
it over 10 times faster than the pose-robust features method and over 15 times
faster than the synthesis based technique. In a similar vein, the time taken by
the second component of the direct bag-of-features approach is also reduced by
approximately 30%, with no loss in recognition accuracy.

5 Conclusions and Further Avenues

In this paper we have made several contributions. We proposed a novel approach
to Active Appearance Model based face classification, where pose-robust
features are obtained without the computationally expensive image synthesis
step. Furthermore, we’ve adapted a histogram-based bag-of-features technique
(previously employed in image categorisation) to face classification, and
contrasted its properties to a previously proposed direct bag-of-features method.
We have also shown that the two bag-of-features approaches, both based on
Gaussian Mixture Models, can be considerably sped up without a loss in
classification accuracy via an approximation of the exponential function.

In the context of pose mismatches between probe and gallery faces,
experiments on the FERET and PIE databases suggest that while there is merit
in the AAM based methods, the bag-of-features techniques generally attain
better performance, with the histogram-based method achieving an average
recognition rate of 89% for pose angles of around 25 degrees. Furthermore, the
bag-of-features approaches are considerably faster, with the histogram-based
method (using the fast exp() function) being over 10 times quicker than the
pose-robust features method.

We note that apart from pose variations, imperfect face localisation [22] is
also an important issue in a real life surveillance system. Imperfect localisations
result in translations as well as scale changes, which adversely affect recognition
performance. To that end, we are currently extending the histogram-based
bag-of-features approach to also deal with scale variations.
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Abstract. This paper describes new feed-forward architectural and
configural/holistic strategies for robust face recognition. This includes
adaptive and robust correlation filters that lock on both appearance and
location, and recognition-by-parts using boosting over strangeness driven
weak learners. The utility of the proposed architectural strategies, shown
with respect to different databases, includes occlusion, disguise, and tem-
poral changes. The results obtained confirm and complement key findings
on the ways people recognize each other, among them that the facial fea-
tures are processed holistically and that the eyebrows are among the
most important features for recognition.

Keywords: adaptive and robust correlation filters (ARCF), biometrics,
boosting, configural, disguise, occlusion, face recognition, feed-forward,
holistic, recognition-by-parts, strangeness, transduction, weak learners.

1 Introduction

One of the grand challenges for computational intelligence is to understand how
people process and recognize each other’s face and to develop reliable face recog-
nition systems. The face recognition challenge underlies biometrics, the science
of authenticating people by measuring their physical or external appearance
(and/or their behavioral or internal traits). There has recently been a flurry of
activity whereby insights about how the primates carry out recognition activ-
ities are projected on the very design of novel biometric architectures for face
recognition with the implicit expectation for robustness to image degradations.
Representative examples of such insights include the feed-forward ventral visual
architecture to learn a generic dictionary of shape-components for task-specific
categorization [23,24], fMRI studies on holistic and configural processing [28,20],
and the psychophysical key findings reported by Sinha et al. [25] on the ways peo-
ple recognize each other and their implications for face recognition. This paper
describes new computational blocks that expand the scope for the feed-forward
ventral architectures to include configural processing characteristic of decision-
making using recognition-by-parts that account for denial and deception. The
computation involved is driven by adaptive and robust correlation filters (ARCF)
or boosting and strangeness as described later. The results obtained confirm sev-
eral results reported by Sinha et al. [25], among them that of the different facial
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features, eyebrows are among the most important for recognition. In addition,
and most important the new strategies and corresponding computational blocks
proposed are shown to display robustness to occlusion and disguise.

2 Feed-Forward Architectures

Serre et al. [24] have recently proposed a quantitative model that “accounts for
the circuits and computations of the feed-forward path of the ventral stream of
visual cortex”. This model is consistent with a general theory of visual process-
ing that extends the hierarchical model of Hubel & Wiesel from primary to
extra-striate visual areas. The proposed feed-forward architecture assumes that
recurrent paths characteristic of back-projections are inactive, and that learn-
ing proceeds in an unsupervised fashion leading to a “generic dictionary of
shape-components from V2 to IT, which provides an invariant representation to
task-specific categorization circuits in higher brain areas.” The hierarchical and
invariant aspect draws from the Neocognitron [8], while the generic dictionary,
inspired by the universal basis driven by the statistics of natural scenes [21], is
the result of adaptation.

The feed-forward aspect is a rather restricted version of the latency and evi-
dence accumulation concepts advanced by Thorpe et al. [26] and reiterated by
the result 18 reported by Sinha et al. [25]. Evidence accumulation involves a
steady progression in the way the visual information is processed and analyzed.
Asynchronous spike propagation and rank order coding were proposed to explain
the speed with which “neurons in the monkey temporal lobe can respond selec-
tively to the presence of a face” [22]. The most strongly activated neurons or
processing units fire first, greater impact is assigned to the spikes with shortest
latency to stimulus onset, and the order and relative strength is the (tempo-
ral) code used for recognition. Such processing squares well with sparse coding
driven by suspicious coincidences [2] and has been shown to “generalize well to
novel views of the same face and to be remarkably resistant to image noise and
reduction in contrast” [5].

The feed-forward strategy proposed is limited to the ventral (“what”) part and
omits the complementary dorsal (“where”) cortical path that encodes for spatial
information. To make configural/holistic processing suitable for face recogni-
tion coarse coding of shape fragments (“parts”) with retinotopy (“geometry”)
is required. The adaptive and robust correlation filters proposed in Sect. 4 han-
dle both the what and where components. The feed-forward architecture also
leaves out the decision-making aspect characteristic of classification and recogni-
tion, which is characteristic of higher-brain areas involved in linking perception,
memory, and action. Ad-hoc implementations, such as support vector machines
(SVM), are used for classification by the feed-forward architectures recently pro-
posed [24]. Our recognition scheme using boosting and strangeness driven weak
learners (see Sect. 6) is biologically motivated from a functional viewpoint but
no specific biological hardware is proposed here for its realization.
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3 Configural and Holistic Processing

Yovel and Kanwisher [28] have shown, using fMRI studies of the Fusiform Face
Area(FFA), that face perception is domain rather than process specific. “Canon-
ical or configural configurations of face parts were found to trigger greater re-
sponse vs. randomly rearranged parts within the face outline in the amygdala,
superior temporal sulcus (STS), and FFA” [9]. Face processing, however, is more
than just configural. Face perception “engages a domain - specific system for
processing both configural and part-based information about faces” [28]. This
accommodates viewpoint or pose changes, occlusion and/or disguise, and tem-
poral changes.

What about encoding for face recognition? “For stimuli such as faces, which
are likely to be encountered by every member of the species, configural repre-
sentations or golden ratio templates may be most effective because the basic
stimulus configuration is invariant across the environments in which individu-
als may live. Thus the predictability of species-specific stimuli may allow for
the creation through evolution of complex pattern recognition systems. These
systems are tuned at birth but remain plastic through development” [11]. Face
recognition involves both holistic and configural processing. “Holistic processing
is characterized by the integration of facial information into a gestalt, whereas
configural processing usually describe sensitivity to the precise spatial layout
of the facial features” [6]. Evidence for the holistic face space comes from “the
detrimental effects of manipulations that disrupt the holistic structure of the
face but leave individual features intact” [16]. Moscovitch et al. [18] have argued
that only a vertical half (face) is necessary to activate configural face processing.
McKone et al. [16] have shown that holistic processing can operate in isolation
from (local) feature-based identification. Heisele et al. [10] have recently pro-
posed a component-based (“recognition-by-parts”) framework for face detection
and identification. They search for components that are similar across classes
of objects, vary less under pose changes than the image pattern of the whole
object, and handle partial occlusion. The framework proposed requires that the
locations of the components relative to each other are not fixed. The best perfor-
mance reported was achieved with a system in which the detection of components
was confined to small regions around the expected positions of the components.
Our realization for recognition-by-parts described in Sect. 6 relaxes the latter
requirement using the golden ratio template.

4 Adaptive and Robust Correlation Filters (ARCF)

Configural and holistic face recognition can benefit from the use of the whole face
and from an encoding where the face parts record both appearance and loca-
tion. We describe here a novel face recognition-by-parts approach using Adaptive
and Robust Correlation Filters (ARCF) whose filter banks are optimized match
(correlation) filters for the above component-based and holistic mix of face com-
ponents. ARCF expand on Minimum Average Correlation Energy(MACE) filters



Robust Face Recognition Strategies 293

and adaptive beam-forming from radar/sonar and are similar to Tikhonov regu-
larization. The cluster and strength of the ARCF correlation peaks indicate the
confidence of the face authentication made, if any. This ability thus expands the
scope of the feed-forward architectures discussed earlier. The correlation scores
and their relative alignment are combined using LDA for recognition purposes
(but could be as easily be combined using boosting using strangeness as de-
scribed in Sect. 6). The adaptive aspect of ARCF comes from its derivation
using both training and test data, while their robust aspect comes from being
optimized to decrease their sensitivity to distortion.

(a) Same Subject.

(b) Same Subject but Parts are Distorted.

(c) Different Subject.

Fig. 1. Correlation Peaks Using Match Filters

Given the output of correlation filters (CF) the strength of the correlation peak
indicates how well the training and test images match, while the location of the
peaks indicates the relative shift between the training and test images. Recognition-
by-parts involves matching the corresponding parts and their relative location.
One only needs to maintain the relative locations of the parts during training and
testing to check for their alignment. This is accomplished by using masks that ex-
pose only the parts and zero out the rest of the face (or alternatively using golden
ratio templates as described in Sect. 6). As an example, three masks are used to
extract out the face parts corresponding to the right eye(RE), left eye(LE), and
nose(N), with the area outside the mask zeroed out. The masks are used to de-
sign three match filters (MF) that are then used for recognition-by-parts. In the
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first example, the test image is from the same subject(see Fig. 1(a)). The match-
ing scores (correlation peaks) for the face components are high and the peak lo-
cations align. The next example (see Fig. 1(b)) illustrates the case of parts that
match but miss proper alignment for the same subject. The test image has been
artificially cut at the middle and the nose is split. MF shows good matching for
the eye components, but poor matching for the corresponding nose component.
The peak locations do not align, and authentication thus fails. The last example
illustrates the case for different subjects(see Fig. 1(c)). The peaks from MF are
weak and misaligned, and authentication fails.

Different correlation filters are available [12] and their performance with re-
spect to training and noise vary. MF is optimum against white noise but it can
train from only one exemplar s. Synthetic Discriminant Functions(SDF) train
from multiple exemplars and are robust only to white noise. Robustness to gen-
eral non-white noise leads to the Minimum Variance Synthetic Discriminant
Filter(MVSDF). Similar to SDF and MF, the MVSDF filters are affected from
the presence of side-lobes, which are secondary peaks away from the true correla-
tion peak, even when training and testing with the same image. This problem is
addressed using the Minimum Average Correlation Energy(MACE) filter which
minimizes the correlation side-lobes. It is, however, extremely sensitive to noise.
To improve on the MACE filter robustness to noise and distortion, the Optimal
Trade-off Filter (OTF) filter was proposed.

The above correlation filters do not take advantage of the information pro-
vided by the test data. Similar to beam-forming [4], the filter should be designed
to adapt and automatically tune out the actual noise/distortion observed in
test data without making any arbitrary assumptions about the structure of the
noise. The result is an adaptive correlation filter whose output correlation sur-
face has an optimally low average side-lobe level. It, however, is still sensitive
to noise/distortion. To make the correlation peak robust, we introduce an ad-
justable loading parameter that can be derived using an approach motivated
by beam-forming or Tikhonov regularization. This leads to a robust filter based
on the magnitude of the match filter weight. The adaptive (A) and robust (R)
components for the new adaptive and robust correlation filter (ARCF) proposed
here are explained below.

Adaptiveness. If the noise/distortion in the test data can be measured, it
can be minimized directly. This approach has been used by both MVSDF and
OTF when Qn, the noise power spectrum or covariance, is known. When Qn is
unknown, it is assumed to be white. We take a different approach, motivated
by adaptive beam-forming, to learn the noise/distortion in the test data, and
automatically adjust the correlation filter to minimize it. This is accomplished
by minimizing the output correlation energy due to test data while subject to a
unit response to training data.

Minimize hHDxh (1)
Subject to SHh = d where S = [s1, · · · , sM ] and d = 1M



Robust Face Recognition Strategies 295

where Dx is a diagonal matrix containing the power spectrum of test exemplar.
The Adaptive Correlation Filter (ACF) solution, h = D−1

x S(SHD−1
x S)−1d, is

similar to the MACE filter except that Ds is now replaced by Dx. The use of test
data Dx, in addition to training data S, is different from previous approaches,
and proves beneficial. The filter tunes itself to noise present in the test data.
The output correlation surface has an optimally low side-lobe level, irrespective
of the actual structure of the noise. This is different from MACE, which lacks
an optimization criterion to reject the noise from test data. It is also different
from MVSDF and OTF where the noise information Qn must be known or has
to be assumed to be white.

Robustness. A robust CF should produce a stable correlation peak that changes
very little even when there is a large change in the strength of the distor-
tion/noise. To minimize the sensitivity of the correlation peak to noise/distortion,
we minimize the rate of change of the squared correlation peak with respect
to the strength of the noise/distortion. Let the squared correlation peak be
p = E‖hHx‖2.

p = E{hHxxHh} = E{hH(s + n)(s + n)Hh}
= E{hH(ssH + snH + nsH + nnH)h} = hHssHh + hHE{snH + nsH + nnH}h

= hHssHh + hHQh = hHssHh + ξhHNh (2)

where the covariance N is normalized so that the average of the diagonal elements
is 1, and ξ is the strength parameter. We seek to minimize dp/dξ = hHNh. The
ARCF formulation becomes

Minimize the output correlation energy hHDxh (3)
Subject to unit response to training signal SHh = d

Subject to sensitivity constraint hHIh ≤ α

The solution is h = (Dx + εI)−1S[SH(Dx + εI)−1S]−1d with ε chosen to satisfy
the constraint hHIh ≤ α. The solution for ε = 0 is h = D−1

x S[SHD−1
x S]−1d. It

has the same form as the MACE filter, which is sensitive to noise/distortion. The
solution h = S[SHS]−1d is found when ε = ∞. This is the same SDF filter and the
correlation peak has maximum robustness to white noise. The magnitude of the
SDF weight is the smallest among the adaptive correlation filters with white noise
robustness. ε is chosen to satisfy the constraint hHh ≤ k‖hSDF ‖2 where k ≥ 1.

Fig. 2(a) shows how different filters compare in matching the left eye part for
both appearance and location. One can see that ARCF outscores MF, MACE,
and OTF in terms of discriminating between the true peak corresponding to
the left eye and the false peak caused by the right eye. In addition, one notes
that ARCF displays the lowest average side-lobe, which indicates its robustness
to noise. The advantage of ARCF over the competing CFs becomes even more
pronounced when noise is added. The false peak for OTF shows now as the
strongest (see Fig. 2(b)). The ARCF architecture for recognition-by-parts is
shown in Fig. 3. Face parts for an enrolled subject and their counterparts from
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(a) Correlation Peaks for MF, MACE, OTF and ARCF.

(b) Effect of Additive White Noise on MF, MACE, OTF and ARCF.

Fig. 2. Matching the Left Eye using Correlation Filters

test data claiming the same identity are combined on a part-by-part basis to build
corresponding ARCF filters. The outputs from ARCF are combined using LDA
to learn the optimal separation direction and are then projected on the direction
axis to find the overall score. ROC at FAR = 1% using the overall scores from
both authentic claims and impostors determines the optimal a-priori decision
thresholds for future authentication claims.

5 Transduction

Transductive inference / transduction is different from inductive inference. It is
a type of local inference (“estimation”) that moves from particular(s) to partic-
ular(s). One directly estimates the values of the function (only) at the points of
interest from the training data [29]. Transduction incorporates unlabeled data,
characteristic of test samples, in the decision-making process responsible for
their labeling. The roles of what is “known” and “unknown” are complemen-
tary. Transduction seeks to find, from all possible authentications for unknown
faces, the one that is most probable to the gallery of known faces. Transduction
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Fig. 3. ARCF Recognition-by-Parts Architecture

“works because the test set provides a nontrivial factorization of the [discrim-
ination] function class” [3]. One key concept behind transduction is the sym-
metrization lemma [29]. The simplest mathematical realization for transductive
inference is the method of k-nearest neighbors. Similar and complementary to
transduction is semi-supervised learning (SSL) [3].

Face recognition requires comparing face images according to the way they
are different from each other and ranking them accordingly. Scoring and ranking
is done using the strangeness and p-values. Let �(z) be the length of the binary
string z and K(z) be its Kolmogorov complexity. The randomness deficiency
D(z) for string z [13,27] is D(z) = �(z) − K(z). The larger the randomness defi-
ciency is, the more regular and more probable the string z is [27]. Transduction
chooses from all the possible labeling for test data the one that yields the largest
randomness deficiency. Randomness deficiency is, however, not computable [13].
One has to approximate it instead using a slightly modified Martin-Lőf test for
randomness. The values taken by such randomness tests are referred to as p-
values with respect to some strangeness measure. The strangeness αi measures
the uncertainty for a data point or face (part) with respect to its true or putative
(assumed) identity label and the labels for all the other face patterns. It is the
ratio of the sum of the k nearest distances d from the same class y divided by
the sum of the k nearest distances from all the other classes (¬y).

αi =

∑k
j=1 dy

ij∑k
j=1 d¬y

ij

. (4)
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The strangeness of an exemplar increases when the distances from the exemplars
of the same class become larger and/or when the distances from the other classes
become smaller. The smaller the strangeness, the larger its randomness deficiency
is. Alternatively the strangeness can be defined as Eq. 5, in a fashion similar to
Cohort models. Last but not least, the strangeness and classification margin are
related via a monotonically non-decreasing function where a small strangeness
amounts to a large margin.

αi =

∑k
j=1 dy

ij

minc �=y

∑k
j=1 dc

ij

(5)

The p-values are determined by the relative rankings of putative authentica-
tions against each one of the classes known to the gallery using the strangeness
measure. The standard p-value construction shown below, where l is the car-
dinality of the training set T, constitutes a valid randomness (deficiency) test
approximation [17] for some transductive (putative label y) hypothesis.

py(e) =
�{i : αi ≥ αy

new}
l + 1

(6)

The interpretation for p-values is similar to statistical testing of likelihood ratios
used to support or discredit the null hypothesis. When the null hypothesis is
rejected for each identity class known, one declares that the test image lacks
mates in the gallery and the identity query is answered with “none of the above.”
Such a rejection is characteristic of open set recognition [14].

6 Boosting Using Strangeness

The face representation used for recognition-by-parts should span a multi -
resolution grid that captures partial information at different scales in order to ac-
commodate different surveillance scenarios including human identification from
distance (HID). The golden ratio template [1] is used as the geometrical / topo-
logical framework where candidates for local face patches are found (see Fig. 4).
The template provides a rough spatial map for the facial features (“landmarks”).

Fig. 4. Golden Ratio Face Template
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Given the positions of eyes, the center oi and minimal width/height ri of each
region in the face image, determined by their corresponding size in the golden
ratio template, become the center of the feature (“patch”) and its initial scale.
In order to encode the local and global information of the face, multiple face
components are extracted at different scale at each position. The k-th component
of region i has the scale rik = sk−1ri with s =

√
2. A Gaussian pyramid [15]

is built by blurring the original image and the same number of patches are
extracted at each level of the pyramid to encode 1st order statistics. Given that
the golden ratio template consists of 16 regions, and given the scale level Ns and
the blurring level Nb, there are 16NsNb first order local patches extracted from
each face image. Second order local patches are also extracted. The motivation
is related to the importance of suspicious coincidence [2], when “two candidate
feature A and B should be encoded together if the join appearance probability
P (A, B) is much greater than P (A)P (B)”. The 2nd order patches are extracted
from two local regions that neighbor each other in the golden ratio template. This
accommodates local configural constraints. The size of each patch is represented
by an ellipse with center x and parameters a and b. Given two neighborhood
regions i and j with scales rik, rjk and centers xi and xj , the 2nd order local
patch is extracted at center x = (xi + xj)/2, a = (‖xi − xj‖ + (rik + rjk))/2 and
b = max(rik, rjk). 27NsNb second order local patches are thus extracted. Fig. 5
shows the first and second order local patches at their initial scale, respectively.

Fig. 5. First and Second Order Patches

Next one computes a descriptor for each local patch that is highly distinctive
yet is as invariant as possible to image variability. The SIFT descriptor [15]
satisfies such requirements and is used to represent each local region. This yields
a 128 dimensional feature vector which is normalized to unit length in order
to reduce the sensitivity to image contrast and brightness changes during the
testing stage. Each face is represented by 43NsNb 1st and 2nd order patches
with SIFT descriptor. Alternatively one could use Gabor descriptors.

The parts are clusters of local patches and are modeled by an exemplar-
based representation. The corresponding model free and non-parametric weak
learners (“parts”) compete to build up strong classifiers. The relative (confi-
dence) weighting and order (ranking) for the weak learners is determined from
their strangeness. Patch selection corresponds to feature selection, which is im-
plemented using iterative backward elimination and cross-validation. Features
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characterized by high strangeness are iteratively discarded. Variable selection
is complementary to feature selection and seeks the most discriminative SIFT
components. The patches selected are aggregated into parts using their relative
locations across the golden ratio template and K-means clustering. The strange-
ness based multi-class weak learner selected at each iteration in boosting [7]
corresponds to the most discriminative part. The confidence and thresholds re-
quired for the strangeness based weak learners are found using cross-validation.
The same approach works for weakly supervised learning when the object or
face of interest shares the image space with clutter, and segmentation is not
required. The explanation comes from the fact that the parts are found as clus-
ters of non-accidental and repeating structures. The parts lock on “semantic”
structures rather than clutter.

The strangeness driven weak learners are trained and validated in a fashion
similar to open set recognition [14]. Each class is represented by parts in terms of
patches and their features. The coefficients and thresholds for the weak learners,
including the thresholds needed for rejection, are learned using validation images.
The best feature correspondence for each part is sought between a validation and
a training face image over the features defining that part. This makes the recog-
nition robust because it allows for different patches or features to score for parts
from faces carrying a similar ID in a fashion similar to Hough transforms and
accumulator arrays. The strangeness of the best feature found is computed for
each validation image under all its putative class labels c (c = 1, · · · , C). Assum-
ing M validation images from each class, one derives M “positive” strangeness
values for each class c, and M(C − 1) “negative” strangeness values correspond-
ing to the case when the putative label of the validation and training image are
the same or not, respectively. The strangeness values are ranked for all the parts
available, and the best weak learner hi is the one that maximizes the recognition
rate over the whole set of validation images V for some part i and threshold
θi. Upon completion, boosting yields the strong classifier H(x), which is a col-
lection of discriminative parts filling the role of weak learners. For non-frontal
faces and/or partly occluded faces, a region of interest (ROI) that looks like a
face needs to be located first. Boosting works as before while searching for parts
within the ROI. Patches are found and clustered as parts, their correspondence
to known parts from enrolled faces is established, and strong classifiers indexed
by pose are activated.

7 Experimental Results

We report here on the feasibility of the ARCF architecture for face recogni-
tion subject to occlusion, disguise, varying illumination, and temporal changes.
The three reported similarity scores are F (Full Face), H (best of Half-Faces),
and P (combination of nose, mouth, and best of eyes). The decision thresh-
olds learned a-priori from one data base, e.g., FERET, carry over success-
fully to another data base, e.g., AR. The face images used for training come
from http://makeoversolutions.com, while the test images are obtained from the
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Fig. 6. Experimental Results of ARCF architecture

training ones by applying face blush and sunglasses (see Fig. 6(a)). Authentica-
tion succeeds to uncover the identity behind the disguise.

Fig. 6(b) shows the strong correlation peaks for the parts not occluded are
aligned. Authentication succeeds to uncover the identity behind the occlusion.
The weak correlation peaks for the full face and eyes and mouth cannot prevent
ARCF from locking on the correct identification in both cases while holistic com-
ponents do not help with recognition for occluded faces. The correlation peaks
in Fig. 6(c) are strong and all aligned, and authentication suacceeds although
illumination varies. Fig. 6(d) shows the correlation peaks of test images acquires
two years later compared to training images. The peaks are strong and aligned.
Authentication succeeds.

Biometric experiments using the interplay between strangeness and boosting
were performed on frontal faces collected at the University of Notre Dame dur-
ing 2002-2003, and now part of the FRGC face image database [19]. The face
images were acquired under different and sometimes uncontrolled lighting condi-
tions and/or with different facial expressions. We sampled 200 subjects from the
data base; for each one there are 48 images of which 16 were acquired in an un-
controlled environment. The local patches are extracted and the corresponding
SIFT descriptors are computed using Ns = 5 and Nb = 4. Each face is repre-
sented by P = 43Ns = 215 parts with Nb + 1 = 5 feature instances. For each
subject, we randomly select 12 images as training set, another 12 images as the
validation set and the remaining 24 images as testing set. Euclidian distance is
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Fig. 7. Examples of the Best Feature for Faces after Boosting Learning

used to compute the strangeness. The top-1 rank identification rates using 1st
order patches and strangeness based boosting were 97.5% and 97.9% without and
with symmetry, respectively. The corresponding rates using both 1st and 2nd
order patches were 98.1% and 98.9%, respectively. The results obtained confirm
several results reported by Sinha et al. [25], among them Result 5 that of the dif-
ferent facial features, eyebrows were indeed found most important for recognition
using boosting and strangeness (see Fig. 7).

8 Conclusions

This paper describes new feed-forward architectural and configural/holistic
strategies for robust face recognition. This includes adaptive and robust correla-
tion filters (ARCF) that lock on both appearance and location, and recognition-
by-parts using boosting over strangeness driven weak learners. The feasibility
and utility of the proposed architectural strategies, shown with respect to differ-
ent data bases includes occlusion, disguise, varying illumination, and temporal
changes. The results obtained also confirm and complement several results on the
ways people recognize each other [25]. One near-term venue that holds promise
for future research expands feed-forward (and hierarchical) architectures towards
higher-brain areas using the ARCF correlation filters as intermediate represen-
tational building blocks that address the dorsal (“where”) cortical path and
boosting mediated by ARCF strangeness. The other long-term venue is to take
advantage of the temporal dimension as discussed next.

Objects, in general, and faces, in particular, are known to be processed se-
quentially over time [5]. The human faces should be processed across discrete
and local units of space and time and generate spatiotemporal patches. Rather
than crawling around to merely score and rank human faces, the progressive
recognition-by-parts scheme, similar to Really Simple Syndication (RSS), could
“ping” discrete parts and/or events to competing face recognition “browsers” to
share, update, and plan on how to proceed with their biometric mission. The
above spatiotemporal and progressive scheme resonates well with recent fMRI
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results showing that “category-specific activity is cueing the memory system to
retrieve studied items” [20]. Recalling a particular event involves reactivating the
constellation of representations that was active during that event, a phenomenon
that Tulving has referred to as ”mental time travel.” This suggests that constel-
lations are much more than merely facial parts assembled together, and that
recalling an event (or face) “involves a process of contextual reinstatement.” In
particular when specific details (“parts”) are recalled, “these details can be used
to further refine the retrieval cue, which leads to recall of additional details, and
so on.” The temporal dimension glues the parts for solving the whodunit even
when the bits (“patches”) and pieces (“parts”) are not seen in the right order.
View generalization can also be mediated by temporal association despite the
fact that image-level differences between two views of the same face are much
larger than those between two different faces viewed at the same angle.

References

1. Anderson, K., McOwan, P.: Robust real-time face tracker for cluttered environ-
ments. Computer Vision and Image Understanding 95, 184–200 (2004)

2. Barlow, H.B.: Unsupervised learning. Neural Computation 1, 295–311 (1989)
3. Chapelle, O., Scholkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cam-

bridge (2006)
4. Cox, H., Zeskind, R.M., Owen, M.M.: Robust Adaptive Beam-forming. IEEE

Trans. on ASSP 35(10) (1987)
5. Delorme, A., Thorpe, S.: Face Identification Using One Spike per Neuron: Resis-

tance to Image Degradation. Neural Networks 14, 795–803 (2001)
6. Duchaine, B., Nakayama, K.: Dissociations of Face and Object Recognition in

Developmental Prosopagnosia. J. of Cognitive Neurosciences 17(2), 1–13 (2005)
7. Freund, Y., Schapire, R.: A decision-theoretic generalization of on - line learning

and an application to boosting. Journal of Computer and System Science 55(1),
119–139 (1997)

8. Fukushima, K.: Neocognitron: A Self-Organizing Neural Network Model for a
Mechanism of Pattern Recognition Unaffected by Shift in Position. Biological Cy-
bernetics 36(4), 193–202 (1980)

9. Golarai, G., Eberhardt, D.L., Grill-Spector, K., Gabrieli, G.D.D.: Representation
of Parts and Canonical Face Configuration in the Amygdala, Superior Temporal
Sulcus (STS) and the Fusiform “Face Area”(FFA). Vision 4(8), 131a (2004)

10. Heisele, B., Serre, T., Poggio, T.: A Component-Based Framework for Face Detec-
tion and Identification. Int. J. of Comp. Vision 74(2), 167–181 (2007)

11. Kanwisher, N., Moscovitch, M.: The Cognitive Neuroscience of Face Processing:
An Introduction. J. of Cognitive Neuropsychology 17(1-3), 1–11 (2000)

12. Kumar, B.V.K., et al.: Correlation Pattern Recognition for Face Recognition. Proc.
IEEE 94(11), 1963–1976 (2006)

13. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions, 2nd edn. Springer, Heidelberg (1997)

14. Li, F., Wechsler, H.: Open Set Face Recognition Using Transduction. IEEE Trans.
on PAMI 27(11), 1686–1697 (2005)

15. Lowe, D.G.: Distinctive image features from scale - invariant key points. Int. Jour-
nal of Computer Vision 60(2), 91–110 (2004)



304 H. Lai, F. Li, and H. Wechsler

16. McKone, E., Martini, P., Nakayama, K.: Categorical Perception of Face Identity in
Noise Isolates Configural Processing. Journal of Experimental Psychology: Human
Perception and Performance 27(3), 573–599 (2001)

17. Melluish, T., Saunders, C., Gammerman, A., Vovk, V.: The Typicalness Frame-
work: A Comparison with the Bayesian Approach, TR-CS, Royal Holloway College,
Univ. of London (2001)

18. Moscovitch, M., Winocur, G., Behrmann, M.: What is Special About Face Recog-
nition? Journal of Cognitive Neuroscience 9, 555–604 (1997)

19. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K.,
Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge.
In: Computer Vision and Pattern Recognition (CVPR), New York (2005)

20. Polyn, S., et al.: Category-Specific Cortical Activity Precedes Retrieval During
Memory Search. Science 310, 1963–1966 (2005)

21. Ruderman, D.L.: The Statistics of Natural Images. Network: Computation in
Neural Systems 5, 517–548 (1994)

22. Rullen, R.V., Gautrais, J., Delorme, A., Thorpe, S.: Face Processing Using One
Spike per Neuron. BioSystems 48, 229–239 (1998)

23. Serre, T., et al.: Robust Object Recognition with Cortex-Like Mechanisms. IEEE
Trans. on Pattern Analysis and Machine Intelligence 29(3), 411–425 (2007)

24. Serre, T., et al.: A Feed-Forward Architecture Accounts for Rapid Categorization.
Proc. National Academy of Sciences (PNAS) 104(15), 6424–6429 (2007)

25. Sinha, P., et al.: Face Recognition by Humans: Nineteen Results All Computer
Vision Researchers Should Know About. Proceedings of the IEEE 94(11), 1948–
1962 (2006)

26. Thorpe, S., Fize, D., Marlot, C.: Speed of Processing in the Human Visual System.
Nature 381, 520–522 (1996)

27. Vovk, V., Gammerman, A., Saunders, C.: Machine Learning Application of Al-
gorithmic Randomness. In: 16th Int. Conf. on Machine Learning (ICML), Bled,
Slovenia (1999)

28. Yovel, G., Kanwisher, N.: Face Perception: Domain Specific, Not Process Specific.
Neuron 44, 889–898 (2004)

29. Vapnik, V.N.: Statistical Learning Theory. Wiley, Chichester (1998)



Author Index

Arbel, Tal 154

Ben-Arie, Jezekiel 46
Bowden, Richard 71

Carter, John N. 139
Chen, Songcan 205

Demirdjian, David 96

Fidaleo, Douglas 109, 124
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